Airway smooth muscle expresses abundant BKCa channels, but their role in regulating contractions remains controversial. This study examines the effects of two potent BKCa channel openers on agonist-induced phasic contractions in rabbit and mouse bronchi. First, we demonstrated the ability of 10 μM GoSlo-SR5-130 to activate BKCa channels in inside-out patches from rabbit bronchial myocytes, where it shifted the activation V1/2 by −88 ± 11 mV (100 nM Ca2+, n = 7). In mouse airway smooth muscle cells, GoSlo-SR5-130 dose dependently shifted V1/2 by 12–83 mV over a concentration range of 1–30 μM. Compound X, a racemic mixture of two enantiomers, reported to be potent BKCa channel openers, shifted V1/2 by 20–79 mV over a concentration range of 0.3–3 μM. In rabbit bronchial rings, exposure to histamine (1 μM) induced phasic contractions after a delay of ~35 min. These were abolished by GoSlo-SR5-130 (30 μM). Nifedipine (100 nM) and CaCCinhA01 (10 μM), a TMEM16A blocker, also abolished histamine-induced phasic contractions. In mouse bronchi, similar phasic contractions were evoked by exposure to U46619 (100 nM) and carbachol (100 nM). In each case, these were inhibited by concentrations of GoSlo-SR5-130 and compound X that shifted the activation V1/2 of BKCa channels in the order of −80 mV. In conclusion, membrane potential-dependent regulation of L-type Ca2+ channels appears to be important for histamine-, U46619-, and carbachol-induced phasic contractions in airway smooth muscle. Contractions can be abolished by BKCa channel openers, suggesting that these channels are potential targets for treating some causes of airway obstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.