Elevated C-reactive protein (CRP) concentrations in the blood are associated with acute and chronic infections and inflammation. Nevertheless, the functional role of increased CRP in multiple bacterial and viral infections as well as in chronic inflammatory diseases remains unclear. Here, we studied the relationship between CRP and gene expression levels in the blood in 491 individuals from the Estonian Biobank cohort, to elucidate the role of CRP in these inflammatory mechanisms. As a result, we identified a set of 1,614 genes associated with changes in CRP levels with a high proportion of interferon-stimulated genes. Further, we performed likelihood-based causality model selection and Mendelian randomization analysis to discover causal links between CRP and the expression of CRP-associated genes. Strikingly, our computational analysis and cell culture stimulation assays revealed increased CRP levels to drive the expression of complement regulatory protein CD59, suggesting CRP to have a critical role in protecting blood cells from the adverse effects of the immune defence system. Our results show the benefit of integrative analysis approaches in hypothesis-free uncovering of causal relationships between traits.
Targeted next-generation sequencing (NGS) methods have become essential in medical research and diagnostics. In addition to NGS sensitivity and high-throughput capacity, precise biomolecule counting based on unique molecular identifier (UMI) has potential to increase biomolecule detection accuracy. Although UMIs are widely used in basic research its introduction to clinical assays is still in progress. Here, we present a robust and cost-effective TAC-seq (Targeted Allele Counting by sequencing) method that uses UMIs to estimate the original molecule counts of mRNAs, microRNAs, and cell-free DNA. We applied TAC-seq in three different clinical applications and compared the results with standard NGS. RNA samples extracted from human endometrial biopsies were analyzed using previously described 57 mRNA-based receptivity biomarkers and 49 selected microRNAs at different expression levels. Cell-free DNA aneuploidy testing was based on cell line (47,XX, +21) genomic DNA. TAC-seq mRNA profiling showed identical clustering results to transcriptome RNA sequencing, and microRNA detection demonstrated significant reduction in amplification bias, allowing to determine minor expression changes between different samples that remained undetermined by standard NGS. The mimicking experiment for cell-free DNA fetal aneuploidy analysis showed that TAC-seq can be applied to count highly fragmented DNA, detecting significant (p = 7.6 × 10−4) excess of chromosome 21 molecules at 10% fetal fraction level. Based on three proof-of-principle applications we demonstrate that TAC-seq is an accurate and highly potential biomarker profiling method for advanced medical research and diagnostics.
The aetiology of endometriosis is still unclear and to find mechanisms behind the disease development, it is important to study each cell type from endometrium and ectopic lesions independently. The objective of this study was to uncover complete mRNA profiles in uncultured stromal cells from paired samples of endometriomas and eutopic endometrium. High-throughput mRNA sequencing revealed over 1300 dysregulated genes in stromal cells from ectopic lesions, including several novel genes in the context of endometriosis. Functional annotation analysis of differentially expressed genes highlighted pathways related to cell adhesion, extracellular matrix-receptor interaction and complement and coagulation cascade. Most importantly, we found a simultaneous upregulation of complement system components and inhibitors, indicating major imbalances in complement regulation in ectopic stromal cells. We also performed experiments to evaluate the effect of endometriosis patients' peritoneal fluid (PF) on complement system gene expression levels, but no significant impact of PF on, and levels was observed. In conclusion, the use of isolated stromal cells enables to determine gene expression levels without the background interference of other cell types. In the future, a new standard design studying all cell types from endometriotic lesions separately should be applied to reveal novel mechanisms behind endometriosis pathogenesis.
The normal menstrual cycle requires a delicate interplay between the hypothalamus, pituitary and ovary. Therefore, its length is an important indicator of female reproductive health. Menstrual cycle length has been shown to be partially controlled by genetic factors, especially in the follicle-stimulating hormone beta-subunit (FSHB) locus. A genome-wide association study meta-analysis of menstrual cycle length in 44 871 women of European ancestry confirmed the previously observed association with the FSHB locus and identified four additional novel signals in, or near, the GNRH1, PGR, NR5A2 and INS-IGF2 genes. These findings not only confirm the role of the hypothalamic–pituitary–gonadal axis in the genetic regulation of menstrual cycle length but also highlight potential novel local regulatory mechanisms, such as those mediated by IGF2.
5Background. Conus consors is a fish-hunting cone snail that lives in the tropical waters of the 1 6Indo-Pacific region. Cone snails have attracted scientific interest for the amazing potency of their 1 7 venom, which consists of a complex mixture of small proteins known as conopeptides, many of 1 8 which act as ion channel and receptor modulators with high selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.