It is well established in nonhuman primates that the medial temporal lobe (MTL) structures, the hippocampus and the entorhinal and perirhinal cortices, are necessary for declarative memory encoding. In humans, the neuropathological and neuropsychological changes in early Alzheimer's disease (AD) further support a role for the rhinal cortex in the consolidation of new events into long-term memory. Little is known, however, regarding the function of the rhinal cortex in humans in vivo. To examine the participation of the interconnected MTL structures as well as the whole-brain network of activated brain areas in visual associative long-term memory, functional magnetic resonance imaging (fMRI) was used to determine the brain regions that are activated during encoding and retrieval of paired pictures in 12 young control subjects. The most striking finding in the MTL activation pattern was the consistent activation of the perirhinal cortex in the encoding-baseline and encoding-retrieval comparisons with a strict statistical threshold (P < 0.00001). In contrast, no perirhinal cortex activation was detected in the retrieval-baseline or retrieval-encoding comparisons even with a low statistical threshold (P < 0.05). The location of the perirhinal activation area was in the transentorhinal part of the perirhinal cortex, in the medial bank of the collateral sulcus. The hippocampus and the more posterior parahippocampal gyrus were activated in both encoding and retrieval conditions. During the encoding processing, MTL activations were more consistent and the hippocampal activation area located more anteriorly than during retrieval. The frontal, parietal, temporal, and occipital association cortices were also activated in the encoding-baseline and retrieval-baseline comparisons. The data suggest that encoding, but not retrieval, of novel picture pairs activates the perirhinal cortex. To our knowledge, this is the first fMRI study reporting encoding activation in this transentorhinal part of the perirhinal cortex, the site of the very earliest neuropathological changes in AD.
Introduction: Thrombocytopenia is frequent in intensive care unit (ICU) patients and has been associated with worse outcome. Platelet transfusions are often used in the management of ICU patients with severe thrombocytopenia. However, the reported frequencies of thrombocytopenia and platelet transfusion practices in the ICU vary
In non-operative patients, low concentrations of suPAR were predictive for survival and high concentrations for RRT and mortality. SuPAR may be used for screening for patients with potentially good survival. The association with RRT may supply an early warning sign for acute renal failure.
Background Atrial fibrillation (AF) is common in intensive care unit (ICU) patients and is associated with poor outcomes. Different management strategies exist, but the evidence is limited and derived from non‐ICU patients. This international survey of ICU doctors evaluated the preferred management of acute AF in ICU patients. Method We conducted an international online survey of ICU doctors with 27 questions about the preferred management of acute AF in the ICU, including antiarrhythmic therapy in hemodynamically stable and unstable patients and use of anticoagulant therapy. Results A total of 910 respondents from 70 ICUs in 14 countries participated in the survey with 24%–100% of doctors from sites responding. Most ICUs (80%) did not have a local guideline for the management of acute AF. The preferred first‐line strategy for the management of hemodynamically stable patients with acute AF was observation (95% of respondents), rhythm control (3%), or rate control (2%). For hemodynamically unstable patients, the preferred strategy was observation (48%), rhythm control (48%), or rate control (4%). Overall, preferred antiarrhythmic interventions included amiodarone, direct current cardioversion, beta‐blockers other than sotalol, and magnesium in that order. A total of 67% preferred using anticoagulant therapy in ICU patients with AF, among whom 61% preferred therapeutic dose anticoagulants and 39% prophylactic dose anticoagulants. Conclusion This international survey indicated considerable practice variation among ICU doctors in the clinical management of acute AF, including the overall management strategies and the use of antiarrhythmic interventions and anticoagulants.
ObjectAneurysmal subarachnoid hemorrhage (aSAH) is a common cause of death or long-term disability. Despite advances in neurocritical care, there is still only a very limited ability to monitor the development of secondary brain injury or to predict neurological outcome after aSAH. Soluble urokinase-type plasminogen activator receptor (suPAR) has shown potential as a prognostic and as an inflammatory biomarker in a wide range of critical illnesses since it displays an association with overall immune system activation. This is the first time that suPAR has been evaluated as a prognostic biomarker in aSAH.MethodsIn this prospective population-based study, plasma suPAR levels were measured in aSAH patients (n = 47) for up to 5 days. suPAR was measured at 0, 12, and 24 h after patient admission to the intensive care unit (ICU) and daily thereafter until he/she was transferred from the ICU. The patients’ neurological outcome was evaluated with the modified Rankin Scale (mRS) at 6 months after aSAH.ResultssuPAR levels (n = 47) during the first 24 h after aSAH were comparable in groups with a favorable (mRS 0–2) or an unfavorable (mRS 3–6) outcome. suPAR levels during the first 24 h were not associated with the findings in the primary brain CT, with acute hydrocephalus, or with antimicrobial medication use during 5-days’ follow-up. suPAR levels were associated with generally accepted inflammatory biomarkers (C-reactive protein, leukocyte count).ConclusionPlasma suPAR level was not associated with either neurological outcome or selected clinical conditions. While suPAR is a promising biomarker for prognostication in several conditions requiring intensive care, it did not reveal any value as a prognostic biomarker after aSAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.