In this paper we present results of delayed detached eddy simulation (DDES) and computational hydroacoustics (CHA) simulations of a marine propeller operating in a cavitation tunnel. DDES is carried out in both wetted and cavitating conditions, and we perform the investigation at several propeller loadings. CHA analyses are done for one propeller loading both in wetted and cavitating conditions. The simulations are validated against experiments conducted in the cavitation tunnel. Propeller global forces, local flow phenomena, as well as cavitation patterns are compared to the cavitation tunnel tests. Hydroacoustic sources due to the propeller are evaluated from the flow solution, and corresponding acoustic simulations utilizing an acoustic analogy are made. The propeller wake flow structures are investigated for the wetted and cavitating operating conditions, and the acoustic excitation and output of the same cases are discussed.
In this paper, we conducted numerical simulations to investigate single and two-phase flows around marine propellers in open-water conditions at different Reynolds number regimes. The simulations were carried out using a homogeneous compressible two-phase flow model with RANS and hybrid RANS/LES turbulence modeling approaches. Transition was accounted for in the model-scale simulations by employing an LCTM transition model. In model scale, also an anisotropic RANS model was utilized. We investigated two types of marine propellers: a conventional and a tip-loaded one. We compared the results of the simulations to experimental results in terms of global propeller performance and cavitation observations. The propeller cavitation, near-blade flow phenomena, and propeller wake flow characteristics were investigated in model- and full-scale conditions. A grid and time step sensitivity studies were carried out with respect to the propeller performance and cavitation characteristics. The model-scale propeller performance and the cavitation patterns were captured well with the numerical simulations, with little difference between the utilized turbulence models. The global propeller performance and the cavitation patterns were similar between the model- and full-scale simulations. A tendency of increased cavitation extent was observed as the Reynolds number increases. At the same time, greater dissipation of the cavitating tip vortex was noted in the full-scale conditions.
In this paper, the ITTC Standard Cavitator is numerically investigated in a cavitation tunnel. Simulations at different cavitation numbers are compared against experiments conducted in the cavitation tunnel of SVA Potsdam. The focus is placed on the numerical prediction of sheet-cavitation dynamics and the analysis of transient phenomena. A compressible two-phase flow model is used for the flow solution, and two turbulence closures are employed: a two-equation unsteady RANS model, and a hybrid RANS/LES model. A homogeneous mixture model is used for the two phases. Detailed analysis of the cavitation shedding mechanism confirms that the dynamics of the sheet cavitation are dictated by the re-entrant jet. The break-off cycle is relatively periodic in both investigated cases with approximately constant shedding frequency. The CFD predicted sheet-cavitation shedding frequencies can be observed also in the acoustic measurements. The Strouhal numbers lie within the usual ranges reported in the literature for sheet-cavitation shedding. We furthermore demonstrate that the vortical flow structures can in certain cases develop striking cavitating toroidal vortices, as well as pressure wave fronts associated with a cavity cloud collapse event. To our knowledge, our numerical analyses are the first reported for the ITTC standard cavitator.
This paper presents a procedure for the estimation of propeller effective wakes in oblique flows. It shows how a recently developed method for controlling coupling errors can be applied to analyze propellers operating in off-design conditions. The approach allows the use of fast potential flow methods for the representation of the propeller in the context of viscous flow solvers and works accurately for a wide range of advance numbers and incidence angles with a minimum computational cost. The new method makes it possible to disclose flow phenomena on the effective wake that were hidden in conventional approaches of effective wake simulation. Different application cases are analyzed, such as a propeller-shaft configuration in inclined flow, a pod propulsor in an oblique inflow, and a ship hull advancing at a yaw angle. A dipole-like distortion on the effective wake is unmasked for a uniform flow incident to a propeller mounted on an inclined shaft. The flow component perpendicular to the axis is found to be responsible for the distortion. The effect of the direction of propeller rotation on the effective wake is illustrated for a single-shaft ship moving at a yaw angle. In particular, keel vortices are either attracted to or repelled from the propeller disk depending on the sign of the yaw angle or alternatively on that of the propeller rotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.