In this research we report the gas-sensing properties of TiO2-x/TiO2-based hetero-structure, which was ‘self-heated’ by current that at constant potential passed through the structure. Amperometric measurements were applied for the evaluation of sensor response towards ethanol, methanol, n-propanol and acetone gases/vapours. The sensitivity towards these gases was based on electrical resistance changes, which were determined by amperometric measurements of current at fixed voltage applied between Pt-based contacts/electrodes deposited on the TiO2-x/TiO2-based layer. X-ray diffraction (XRD) analysis revealed the formation of TiO2-x/TiO2-based hetero-structure, which is mainly based on Ti3O5/TiO2 formed during the hydro-thermal oxidation-based sensing-layer preparation process. Additionally, photoluminescence and time-resolved photoluminescence decay kinetics-based signals of this sensing structure revealed the presence of TiO2 mainly in the anatase phase in the TiO2-x/TiO2-based hetero-structure, which was formed at 400 °C annealing temperature. The evaluation of TiO2-x/TiO2-based gas-sensing layer was performed at several different temperatures (25 °C, 72 °C, 150 °C, 180 °C) and at these temperatures different sensitivity to the aforementioned gaseous materials was determined.
This study describes the application of a polypyrrole-based sensor for the determination of SARS-CoV-2-S spike glycoprotein. The SARS-CoV-2-S spike glycoprotein is a spike protein of the coronavirus SARS-CoV-2 that recently caused the worldwide spread of COVID-19 disease. This study is dedicated to the development of an electrochemical determination method based on the application of molecularly imprinted polymer technology. The electrochemical sensor was designed by molecular imprinting of polypyrrole (Ppy) with SARS-CoV-2-S spike glycoprotein (MIP-Ppy). The electrochemical sensors with MIP-Ppy and with polypyrrole without imprints (NIP-Ppy) layers were electrochemically deposited on a platinum electrode surface by a sequence of potential pulses. The performance of polymer layers was evaluated by pulsed amperometric detection. According to the obtained results, a sensor based on MIP-Ppy is more sensitive to the SARS-CoV-2-S spike glycoprotein than a sensor based on NIP-Ppy. Also, the results demonstrate that the MIP-Ppy layer is more selectively interacting with SARS-CoV-2-S glycoprotein than with bovine serum albumin. This proves that molecularly imprinted MIP-Ppy-based sensors can be applied for the detection of SARS-CoV-2 virus proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.