Food being the vital part of everyone's lives, food detection and recognition becomes an interesting and challenging problem in computer vision and image processing. In this paper we mainly propose an automatic food detection system that detects and recognises varieties of Indian food. This paper uses a combined colour and shape features. The K-Nearest-Neighbour (KNN) and Support-VectorMachine (SVM) classification models are used to classify the features. A comparative study on the performance of both the classification models is performed. The experimental result shows the higher efficiency of SVM classifier over KNN classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.