Humans are well-versed in reasoning about the behaviors of physical objects and choosing actions accordingly to accomplish tasks, while it remains a major challenge for AI. To facilitate research addressing this problem, we propose a new testbed that requires an agent to reason about physical scenarios and take an action appropriately. Inspired by the physical knowledge acquired in infancy and the capabilities required for robots to operate in real-world environments, we identify 15 essential physical scenarios. For each scenario, we create a wide variety of distinct task templates, and we ensure all the task templates within the same scenario can be solved by using one specific strategic physical rule. By having such a design, we evaluate two distinct levels of generalization, namely the local generalization and the broad generalization. We conduct an extensive evaluation with human players, learning agents with varying input types and architectures, and heuristic agents with different strategies. Inspired by how human IQ is calculated, we define the physical reasoning quotient (Phy-Q score) that reflects the physical reasoning intelligence of an agent. Our evaluation shows that 1) all agents are far below human performance, and 2) learning agents, even with good local generalization ability, struggle to learn the underlying physical reasoning rules and fail to generalize broadly. We encourage the development of intelligent agents that can reach the human level Phy-Q score. Website: https://github.com/phy-q/benchmark
No abstract
Humans are well-versed in reasoning about the behaviors of physical objects when choosing actions to accomplish tasks, while it remains a major challenge for AI. To facilitate research addressing this problem, we propose a new benchmark that requires an agent to reason about physical scenarios and take an action accordingly. Inspired by the physical knowledge acquired in infancy and the capabilities required for robots to operate in real-world environments, we identify 15 essential physical scenarios. For each scenario, we create a wide variety of distinct task templates, and we ensure all the task templates within the same scenario can be solved by using one specific physical rule. By having such a design, we evaluate two distinct levels of generalization, namely the local generalization and the broad generalization. We conduct an extensive evaluation with human players, learning agents with varying input types and architectures, and heuristic agents with different strategies. The benchmark gives a Phy-Q (physical reasoning quotient) score that reflects the physical reasoning ability of the agents. Our evaluation shows that 1) all agents fail to reach human performance, and 2) learning agents, even with good local generalization ability, struggle to learn the underlying physical reasoning rules and fail to generalize broadly. We encourage the development of intelligent agents with broad generalization abilities in physical domains. URL: https://github.com/phy-q/benchmark * Equal contribution Preprint. Under review.
The Angry Birds AI competition has been held over many years to encourage the development of AI agents that can play Angry Birds game levels better than human players. Many different agents with various approaches have been employed over the competition's lifetime to solve this task. Even though the performance of these agents has increased significantly over the past few years, they still show major drawbacks in playing deceptive levels. This is because most of the current agents try to identify the best next shot rather than planning an effective sequence of shots. In order to encourage advancements in such agents, we present an automated methodology to generate deceptive game levels for Angry Birds. Even though there are many existing content generators for Angry Birds, they do not focus on generating deceptive levels. In this paper, we propose a procedure to generate deceptive levels for six deception categories that can fool the state-of-the-art Angry Birds playing AI agents. Our results show that generated deceptive levels exhibit similar characteristics of human-created deceptive levels. Additionally, we define metrics to measure the stability, solvability, and degree of deception of the generated levels.Index Terms-deceptive games, level generation, game playing agents, Angry Birds• Red bird: No special power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.