This paper addresses the use of liquid crystal devices for electro-optic infrared laser beam steering, such as liquid crystal optical phased arrays (OPAs) and digital beam deflectors (DBDs). In these devices, voltages are synchronously applied to different liquid crystal pixels to steer light, either by diffraction and/or refraction using birefringent prisms. Dual frequency liquid crystals provide an order of magnitude higher speed as compared to conventional nematic liquid crystals, at the cost of more complex addressing algorithms and control circuits. In order to optimize the optical performance of a liquid crystal device, the control voltages must be calibrated. This procedure involves adjustment of the control voltages while monitoring the optical efficiency, and must be done for both steady-state phase levels as well as transitions between phase levels. Manual voltage calibration is unrealistically time consuming for multi-channel beam steering devices. Computer based calibration algorithms for dual frequency liquid crystal devices are discussed, and results are presented for both steady state and dynamic voltage calibration procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.