In this work, by utilizing photochromic spiropyrans conjugated upconversion nanophosphors, we have successfully prepared NIR/visible light tuned interfacially active nanoparticles for the formulation of Pickering emulsions with reversible inversion properties. By loading a model enantioselective biocatalytic active bacteria Alcaligenes faecalis ATCC 8750 in the aqueous phase, we demonstrated for the first time that the multifunctional Pickering emulsion not only highly enhanced its catalytic performance but also relieved the substrate inhibition effect. In addition, product recovery, and biocatalysts and colloid emulsifiers recycling could be easily realized based on the inversion ability of the Pickering emulsion. Most importantly, the utilization of NIR/visible light to perform the reversible inversion without any chemical auxiliaries or temperature variation showed little damage toward the biocatalysts, which was highlighted by the high catalytic efficiency and high enantioselectivity even after 10 cycles. The NIR/visible light controlled Pickering emulsion showed promising potential as a powerful technique for biocatalysis in biphasic systems.
Extracellular DNA (eDNA) is an essential structural component during biofilm formation, including initial bacterial adhesion, subsequent development, and final maturation. Herein, the construction of a DNase-mimetic artificial enzyme (DMAE) for anti-biofilm applications is described. By confining passivated gold nanoparticles with multiple cerium(IV) complexes on the surface of colloidal magnetic Fe3 O4 /SiO2 core/shell particles, a robust and recoverable artificial enzyme with DNase-like activity was obtained, which exhibited high cleavage ability towards both model substrates and eDNA. Compared to the high environmental sensitivity of natural DNase in anti-biofilm applications, DMAE exhibited a much better operational stability and easier recoverability. When DMAE was coated on substratum surfaces, biofilm formation was inhibited for prolonged periods of time, and the DMAE excelled in the dispersion of established biofilms of various ages. Finally, the presence of DMAE remarkably potentiated the efficiency of traditional antibiotics to kill biofilm-encased bacteria and eradiate biofilms.
Based on a series of biochemical experiments for analysis and characterization, it is found that the uncharged C-dots have no effect on bacterial growth while the negatively charged and positively charged C-dots can induce bacteria apoptosis. For the positively charged C-dots, they can induce both bacteria apoptosis and bacteria death. These observations will provide new insights into bioapplications of carbon dots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.