Peroxisome proliferator-activated receptor alpha (PPARalpha) regulates the utilization of fat as an energy source during starvation and is the molecular target for the fibrate dyslipidemia drugs. Here, we identify the endocrine hormone fibroblast growth factor 21 (FGF21) as a mediator of the pleiotropic actions of PPARalpha. FGF21 is induced directly by PPARalpha in liver in response to fasting and PPARalpha agonists. FGF21 in turn stimulates lipolysis in white adipose tissue and ketogenesis in liver. FGF21 also reduces physical activity and promotes torpor, a short-term hibernation-like state of regulated hypothermia that conserves energy. These findings demonstrate an unexpected role for the PPARalpha-FGF21 endocrine signaling pathway in regulating diverse metabolic and behavioral aspects of the adaptive response to starvation.
SUMMARY
Mutations in 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2) cause congenital generalized lipodystrophy. To understand the molecular mechanisms underlying the metabolic complications associated with AGPAT2 deficiency, Agpat2 null mice were generated. Agpat2−/− mice develop severe lipodystrophy affecting both white and brown adipose tissue, severe insulin resistance, diabetes, and hepatic steatosis. The expression of lipogenic genes and rates of de novo fatty acid biosynthesis were increased ~4-fold in Agpat2−/− mouse livers. The mRNA and protein levels of monoacylglycerol acyltransferase isoform 1 were markedly increased in the livers of Agpat2−/− mice suggesting that the alternative monoacylglycerol pathway for triglyceride biosynthesis is activated in the absence of AGPAT2. Feeding a fat-free diet reduced liver triglycerides by ~50% in Agpat2−/− mice. These observations suggest that both dietary fat and hepatic triglyceride biosynthesis via a novel monoacylglycerol pathway may contribute to hepatic steatosis in Agpat2−/− mice.
G protein-coupled receptor (GPCR) pathways control glucose and fatty acid metabolism and the onset of obesity and diabetes. Regulators of G protein signaling (RGS) are GTPase-activating proteins (GAPs) for G i and G q ␣-subunits that control the intensity and duration of GPCR signaling. Herein we determined the role of Rgs16 in GPCR regulation of liver metabolism. Rgs16 is expressed during the last few hours of the daily fast in periportal hepatocytes, the oxygen-rich zone of the liver where lipolysis and gluconeogenesis predominate. Rgs16 knock-out mice had elevated expression of fatty acid oxidation genes in liver, higher rates of fatty acid oxidation in liver extracts, and higher plasma -ketone levels compared with wild type mice. By contrast, transgenic mice that overexpressed RGS16 protein specifically in liver exhibited reciprocal phenotypes as well as low blood glucose levels compared with wild type littermates and fatty liver after overnight fasting. The transcription factor carbohydrate response element-binding protein (ChREBP), which induces fatty acid synthesis genes in response to high carbohydrate feeding, was unexpectedly required during fasting for maximal Rgs16 transcription in liver and in cultured primary hepatocytes during gluconeogenesis. Thus, RGS16 provides a signaling mechanism for glucose production to inhibit GPCRstimulated fatty acid oxidation in hepatocytes.Body weight homeostasis is maintained, in part, by complex communication between G protein-coupled receptors (GPCRs) 5 localized in the brain and in the periphery. Long term and short term satiety signals are integrated to create a dynamic equilibrium between energy expenditure and food intake.The activation cycle of heterotrimeric G proteins revolves around receptor-catalyzed guanine nucleotide exchange on the G␣ subunit; the G␣ GDP ␥ heterotrimer is inactive, whereas hormone binding to receptor catalyzes formation of active G␣ GTP (1). RGS proteins are GTPase-activating proteins (GAPs) for G i -and G q/11 -class ␣-subunits and can terminate signaling by restoring the inactive G␣ GDP ␥ heterotrimer, thereby uncoupling hormone-bound receptor from effector protein activation (2-4). An important complexity of G protein signaling is that both G␣ GTP and free G␥ subunits can independently regulate the production of second messengers by effector proteins. RGS proteins can integrate and coordinate responses to separate G␣ and G␥ signals to generate an emergent property, such as RGS-mediated Ca 2ϩ oscillations evoked by G␣ q/11 -coupled agonists (5-8).Given that Rgs mRNAs were up-regulated by GPCR agonists controlling mating responses and nutrient sensing in fungi (9 -11), we hypothesized that Rgs expression could be utilized as a marker for unknown G i -or G q/11 -mediated signal transduction in mammalian physiology. To explore novel G protein function in liver, we surveyed differential regulation of Rgs genes in liver of fasted and refed wild type mice (12). Interestingly, of the 21 Rgs genes, only Rgs16 mRNA was diurnally express...
5'-AMP-activated kinase (AMPK) plays a key role in the regulation of cellular lipid metabolism. The contribution of vesicular exocytosis to this regulation is not known. Accordingly, we studied the effects of AMPK on exocytosis and intracellular lipid content in a model liver cell line. Activation of AMPK by metformin or 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) increased the rates of constitutive exocytosis by about 2-fold. Stimulation of exocytosis by AMPK occurred within minutes, and persisted after overnight exposure to metformin or AICAR. Activation of AMPK also increased the amount of triacylglycerol (TG) and apolipoprotein B (apoB) secreted from lipid-loaded cells. These effects were accompanied by a decrease in the intracellular lipid content indicating that exocytosis of lipoproteins was involved in these lipid-lowering effects. While AMPK increased the rates of fatty acid oxidation (FAO), the lipid-lowering effects were quantitatively significant even after inhibition of FAO with R-etomoxir. These results suggest that hepatic AMPK stimulates constitutive exocytosis of lipoproteins, which may function in parallel with FAO to regulate intracellular lipid content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.