The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well‐stacked and low polarity molecules that do not compromise film density may lead to improvements and desirable material engineering, as conventional porous SiOx derivatives exhibit detrimental degradation of thermo‐mechanical properties when their k values are further scaled down. This work presents a systematic engineering approach for controlling ultralow‐k amorphous boron nitride (aBN) deposition on 300 mm Si platforms. The results indicate that aBN grown from borazine precursor exhibits ultralow dielectric constant ≈2, high density, excellent mechanical strength, and extended thermodynamic stability. Unintentional boron ion doping during plasma dissociation that may induce artificial reductions of k value on n‐type substrates is alleviated by employing a remote microwave plasma process. Moreover, the adoption of low growth rate processes for ultralow‐k aBN deposition is found to be critical to provide for the superior mechanical strength and high density, and is attributed to the formation of hexagonal ring stacking frameworks. These results pave the way and offer engineering solutions for new ultralow‐k material introduction into future semiconductor manufacturing applications.
Thin film technology, based on different chemical and physical methods, enabled miniaturization, co-integration, and amelioration of the performance of the devices. Chemical vapor deposition (CVD) systems ensure high productivity and demonstrate excellent film uniformity (up to 12 inch wafers) and repeatability with high throughput for a variety of different films of oxides, nitrides, metals, chalcogenides, etc. In the last two decades, direct liquid injection (DLI)-CVD enabling the usage of solid and liquid precursors has proven to be one of the most versatile CVD process to meet industrial requirements. In this chapter, the requirements to the precursors suitable for DLI-CVD, different classes of available precursors, and models used to describe the evaporation are overviewed. Then, different liquid delivery devices used in DLI-CVD such as capillary tubes, syringes, aerosol delivery systems, and valves are reviewed in detail.
Precision control of resistivity/conductivity of LaNiO3 (LNO) films is essential for their integration as electrodes in the functional heterostructures. This becomes possible if the relationship between processing parameters–composition–structure–resistivity is determined. LaNiO3 films were deposited by three different chemical vapor deposition methods using different precursor supply systems: direct liquid delivery, pulsed liquid injection, and aerosol generation. The possibilities to ameliorate the efficiency of precursor evaporation and of film growth were studied. The relationship between deposition conditions and composition was determined. Detailed analysis of the epitaxial growth of LNO films on cubic and trigonal substrates and the influence of the rhombohedral distortion on the microstructural quality was done. The resistivity of LaNiO3 films, grown by chemical vapor deposition, was mainly defined by microstructural defects and La/Ni composition. The high epitaxial quality LaNiO3/LaAlO3 films with nearly stoichiometric La/Ni ratio presented low resistivity, which was very close to that of bulk LaNiO3. Their annealing in oxygen atmosphere had little effect on the resistivity, which suggests a minor presence of oxygen vacancies in the as-grown films.
This work consists of optimizing TiN plasma-enhanced atomic layer deposition using two different N-sources: NH[Formula: see text] and N[Formula: see text]. In addition to maximizing the growth per cycle (GPC) and to shorten the deposition duration, comprehensive in situ and ex situ physicochemical characterizations give valuable information about the influence of the N-source nature, their dilution in Ar, and the plasma power on layer’s final properties. N[Formula: see text] and NH[Formula: see text] dilutions within Ar are extensively investigated since they are critical to decreasing the mean free path ([Formula: see text]) of plasma-activated species. A 1:1 gas ratio for the N-sources:Ar mixture associated with low flows (20 sccm) is optimal values for achieving highest GPCs (0.8 Å/cycle). Due to lower reactivity and shorter [Formula: see text] of the excited species, N[Formula: see text] plasma is more sensitive to power and generator-to-sample distance, and this contributes to lower conformality than with NH[Formula: see text] plasma. The resistivity of the initial amorphous films was high ([Formula: see text] cm) and was significantly reduced after thermal treatment ([Formula: see text] cm). This demonstrates clearly the beneficial effect of the crystallinity of the film conductivity. Though N[Formula: see text] process appears slightly slower than the NH[Formula: see text] one, it leads to an acceptable film quality. It should be considered since it is nonharmful, and the process could be further improved by using a reactor exhibiting optimized geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.