We present and compare multiple imputation methods for multilevel continuous and binary data where variables are systematically and sporadically missing.The methods are compared from a theoretical point of view and through an extensive simulation study motivated by a real dataset comprising multiple studies. Simulations are reproducible. The comparisons show why these multiple imputation methods are the most appropriate to handle missing values in a multilevel setting and why their relative performances can vary according to the missing data pattern, the multilevel structure and the type of missing variables.This study shows that valid inferences can only be obtained if the dataset gathers a large number of clusters. In addition, it highlights that heteroscedastic MI methods provide more accurate inferences than homoscedastic methods, which should be reserved for data with few individuals per cluster. Finally, the method of Quartagno and Carpenter (2016a) appears generally accurate for binary variables, the method of Resche-Rigon and White (2016) with large clusters, and the approach of Jolani et al. (2015) with small clusters.
We propose a new method to impute missing values in mixed datasets. It is based on a principal components method, the factorial analysis for mixed data, which balances the influence of all the variables that are continuous and categorical in the construction of the dimensions of variability. Because the imputation uses the principal axes and components, the prediction of the missing values is based on the similarity between individuals and on the relationships between variables. The properties of the method are illustrated via simulations and the quality of the imputation is assessed through real datasets. The method is compared to a recent method (Stekhoven and Bühlmann, 2011) based on random forests and shows better performances especially for the imputation of categorical variables and when there are highly linear relationships between continuous variables.Keywords missing values · mixed data · imputation · principal components method · factorial analysis of mixed data Agrocampus Ouest,
Introduction: Burn injury is associated with a high risk of death. Whether a pattern of immune and inflammatory responses after burn is associated with outcome is unknown. The aim of this study was to explore the association between systemic immune and inflammatory responses and outcome in severely-ill burn patients.Materials and Methods: Innate immunity, adaptive immunity, activation and stress and inflammation biomarkers were collected at admission and days 2, 7, 14, and 28 in severely-ill adult burn patients. Primary endpoint was mortality at day 90, secondary endpoint was secondary infections. Healthy donors (HD) served as controls. Multiple Factorial Analysis (MFA) was used to identify patterns of immune response.Results: 50 patients were included. Age was 49.2 (44.2–54.2) years, total burn body surface area was 38.0% (32.7–43.3). Burn injury showed an upregulation of adaptive immunity and activation biomarkers and a down regulation of innate immunity and stress/inflammation biomarkers. High interleukin-10 (IL-10) at admission was associated with risk of death. However, no cluster of immune/inflammatory biomarkers at early timepoints was associated with mortality. HLA-DR molecules on monocytes at admission were associated with bacterial infections and septic shock. Later altered immune/inflammatory responses in patients who died may had been driven by the development of septic shock.Conclusion: Burn injury induced an early and profound upregulation of adaptive immunity and activation biomarkers and a down regulation of innate immunity and stress/inflammation biomarkers. Immune and inflammatory responses were associated with bacterial infection and septic shock. Absence of immune recovery patterns was associated with poor prognosis.
We propose a multiple imputation method to deal with incomplete categorical data. This method imputes the missing entries using the principal components method dedicated to categorical data: multiple correspondence analysis (MCA). The uncertainty concerning the parameters of the imputation model is reflected using a non-parametric bootstrap. Multiple imputation using MCA (MIMCA) requires estimating a small number of parameters due to the dimensionality reduction property of MCA. It allows the user to impute a large range of data sets. In particular, a high number of categories per variable, a high number of variables or a small the number of individuals are not an issue for MIMCA. Through a simulation study based on real data sets, the method is assessed and compared to the reference methods (multiple imputation using the loglinear model, multiple imputation by logistic regressions) as well to the latest works on the topic (multiple imputation by random forests or by the Dirichlet process mixture of products of multinomial distributions model). The proposed method shows good performances in terms of bias and coverage for an analysis model such as a main effects logistic regression model. In addition, MIMCA has the great advantage that it is substantially less time consuming on data sets of high dimensions than the other multiple imputation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.