Duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A) and is known to disrupt the lipid metabolism in myelinating Schwann cells by unknown mechanisms. By using two CMT1A mouse models overexpressing human PMP22, we discovered that PMP22 dose-dependently downregulates genes that are involved in lipid and cholesterol metabolism. Lipidomic analysis on CMT1A mouse sciatic nerves confirmed lipid metabolic abnormalities primarily associated with cholesterol and sphingolipids. We observed similar lipidomic profiles and downregulation of genes associated with lipid metabolism in human CMT1A patient induced pluripotent stem cell-derived Schwann cell precursors (iPSC-SCPs). We confirmed these findings by demonstrating altered lipid raft dynamics and plasma membrane fluidity in CMT1A iPSC-SCPs. Additionally, we identified impaired cholesterol incorporation in the plasma membrane due to altered lipid storage homeostasis in CMT1A iPSC-SCPs, which could be modulated by changing the lipid composition of the cell culture medium. These findings suggest that PMP22 plays a role in regulating the lipid composition of the plasma membrane and lipid storage homeostasis. Targeting lipid metabolism may hold promise as a potential treatment for CMT1A patients.
Background One of the key limitations of targeted cancer therapies is the rapid onset of therapy resistance. Taking BRAF-mutant melanoma as paradigm, we previously identified the lipogenic regulator SREBP-1 as a central mediator of resistance to MAPK-targeted therapy. Reasoning that lipogenesis-mediated alterations in membrane lipid poly-unsaturation lie at the basis of therapy resistance, we targeted fatty acid synthase (FASN) as key player in this pathway to evoke an exquisite vulnerability to clinical inducers of reactive oxygen species (ROS), thereby rationalizing a novel clinically actionable combination therapy to overcome therapy resistance. Methods Using gene expression analysis and mass spectrometry-based lipidomics of BRAF-mutant melanoma cell lines, melanoma PDX and clinical data sets, we explored the association of FASN expression with membrane lipid poly-unsaturation and therapy-resistance. Next, we treated therapy-resistant models with a preclinical FASN inhibitor TVB-3664 and a panel of ROS inducers and performed ROS analysis, lipid peroxidation tests and real-time cell proliferation assays. Finally, we explored the combination of MAPK inhibitors, TVB-3664 and arsenic trioxide (ATO, as a clinically used ROS-inducer) in Mel006 BRAF mutant PDX as a gold model of therapy resistance and assessed the effect on tumor growth, survival and systemic toxicity. Results We found that FASN expression is consistently increased upon the onset of therapy resistance in clinical melanoma samples, in cell lines and in Mel006 PDX and is associated with decreased lipid poly-unsaturation. Forcing lipid poly-unsaturation in therapy-resistant models by combining MAPK inhibition with FASN inhibition attenuated cell proliferation and rendered cells exquisitely sensitive to a host of ROS inducers. In particular, the triple combination of MAPK inhibition, FASN inhibition, and the clinical ROS-inducing compound ATO dramatically increased survival of Mel006 PDX models from 15 to 72% with no associated signs of toxicity. Conclusions We conclude that under MAPK inhibition the direct pharmacological inhibition of FASN evokes an exquisite vulnerability to inducers of ROS by increasing membrane lipid poly-unsaturation. The exploitation of this vulnerability by combining MAPK and/or FASN inhibitors with inducers of ROS greatly delays the onset of therapy resistance and increases survival. Our work identifies a clinically actionable combinatorial treatment for therapy-resistant cancer.
Tumor growth is inevitably accompanied by changes in the tumor-microenvironment to which cancer cells have to adapt in order to thrive. Alterations in metabolism and blood perfusion of solid tumors have been suggested to drive a spontaneous increase in tumoral temperature. However, it is currently unknown if this phenomenon affects cancer biology. We found increased temperature in human pancreatic ductal adenocarcinoma (PDAC) tumors. By mimicking this observation in PDAC cell lines, we found that cancer cells adapt to tumoral temperature by altering the cellular lipidome and accordingly evade ferroptosis, a lipid-dependent form of cell death. We found evidence that tumoral temperature-induced ferroptosis evasion depends on p38-MAPK deactivation and ultimately drives resistance to the chemotherapeutic drug gemcitabine. Collectively, our findings suggest a direct role for p38-dependend ferroptosis evasion in gemcitabine resistance, and we identify tumoral temperature as a pathophysiological driver of this process. Our discovery unveils temperature as an unexplored hallmark of the tumor-microenvironment. Citation Format: Vincent de Laat, Halit Topal, Jonas Dehairs, Xander Spotbeen, Ali Talebi, Frank Vanderhoydonc, Tessa Ostyn, Tania Roskams, Baki Topal, Johan Swinnen. Evidence for a tumoral temperature driven chemoresistance pathway in pancreatic cancer [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer; 2022 Sep 13-16; Boston, MA. Philadelphia (PA): AACR; Cancer Res 2022;82(22 Suppl):Abstract nr C077.
Climate change demands for sustainable options for heating and cooling of buildings. Low-temperature thermal energy can be abstracted from the drinking water distribution system (DWDS); this is called thermal energy from drinking water (TED). The possible use of TED as a secondary function of the DWDS raises the question whether this secondary function can exist alongside the primary function (supplying safe and reliable drinking water) and, if so, under what conditions. Using various cases, the potential downstream effects of TED related to drinking water temperature (and hence, downstream increase of cost and CO 2 emissions for water heating) and microbiological drinking water quality were studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.