Recently there have been significant advances in image upscaling or image super-resolution based on a dictionary of low and high resolution exemplars. The running time of the methods is often ignored despite the fact that it is a critical factor for real applications. This paper proposes fast super-resolution methods while making no compromise on quality. First, we support the use of sparse learned dictionaries in combination with neighbor embedding methods. In this case, the nearest neighbors are computed using the correlation with the dictionary atoms rather than the Euclidean distance. Moreover, we show that most of the current approaches reach top performance for the right parameters. Second, we show that using global collaborative coding has considerable speed advantages, reducing the super-resolution mapping to a precomputed projective matrix. Third, we propose the anchored neighborhood regression. That is to anchor the neighborhood embedding of a low resolution patch to the nearest atom in the dictionary and to precompute the corresponding embedding matrix. These proposals are contrasted with current state-ofthe-art methods on standard images. We obtain similar or improved quality and one or two orders of magnitude speed improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.