Background Integrin alpha-V-beta-3 (αvβ3) pathway is involved in intraplaque angiogenesis and inflammation and represents a promising target for molecular imaging in cardiovascular diseases such as atherosclerosis. The aim of this study was to assess the clinical correlates of arterial wall accumulation of 68Ga-NODAGA-RGD, a specific αvβ3 integrin ligand for PET. Materials and methods The data of 44 patients who underwent 68Ga-NODAGA-RGD PET/CT scans were retrospectively analyzed. Tracer accumulation in the vessel wall of major arteries was analyzed semi-quantitatively by blood-pool-corrected target-to-background ratios. Tracer uptake was compared with clinically documented atherosclerotic cardiovascular disease, cardiovascular risk factors and calcified plaque burden. Data were compared using the Mann–Whitney U test, Pearson correlation and Spearman correlation. Results 68Ga-NODAGA-RGD arterial uptake was significantly higher in patients with previous clinically documented atherosclerotic cardiovascular disease (mean TBR 2.44 [2.03–2.55] vs. 1.81 [1.56–1.96], p = 0.001) and showed a significant correlation with prior cardiovascular or cerebrovascular event (r = 0.33, p = 0.027), BMI (ρ = 0.38, p = 0.01), plaque burden (ρ = 0.31, p = 0.04) and hypercholesterolemia (r = 0.31, p = 0.04). Conclusions 68Ga-NODAGA-RGD holds promise as a non-invasive marker of disease activity in atherosclerosis, providing information about intraplaque angiogenesis.
BackgroundIntegrin-targeting radiopharmaceuticals have potential broad applications, spanning from cancer theranostics to cardiovascular diseases. We have previously reported preclinical dosimetry results of 68Ga-NODAGA-RGDyK in mice. This study presents the first human dosimetry of 68Ga-NODAGA-RGDyK in the five consecutive patients included in a clinical imaging protocol of carotid atherosclerotic plaques. Five male patients underwent whole-body time-of-flight (TOF) PET/CT scans 10, 60 and 120 min after tracer injection (200 MBq). Quantification of 68Ga activity concentration was first validated by a phantom study. To be used as input in OLINDA/EXM, time-activity curves were derived from manually drawn regions of interest over the following organs: brain, thyroid, lungs, heart, liver, spleen, stomach, kidneys, red marrow, pancreas, small intestine, colon, urinary bladder and whole body. A separate dosimetric analysis was performed for the choroid plexuses. Female dosimetry was extrapolated from male data. Effective doses (EDs) were estimated according to both ICRP60 and ICRP103 assuming 30-min and 1-h voiding cycles.ResultsThe body regions receiving the highest dose were urinary bladder, kidneys and choroid plexuses. For a 30-min voiding cycle, the EDs were 15.7 and 16.5 μSv/MBq according to ICRP60 and ICRP103, respectively. The extrapolation to female dosimetry resulted in organ absorbed doses 17% higher than those of male patients, on average.The 1-h voiding cycle extrapolation resulted in EDs of 19.3 and 19.8 μSv/MBq according to ICRP60 and ICRP103, respectively. A comparison is made with previous mouse dosimetry and with other human studies employing different RGD-based radiopharmaceuticals.ConclusionsAccording to ICRP60/ICRP103 recommendations, an injection of 200 MBq 68Ga-NODAGA-RGDyK leads to an ED in man of 3.86/3.92 mSv. For future therapeutic applications, specific attention should be directed to delivered dose to kidneys and potentially also to the choroid plexuses.Trial registrationClinical trial.gov, NCT01608516
NODAGA-RGDyK was reliably labeled with 68Ga and revealed a predicted ED of 0.014 mSv/MBq. Tumour uptake was rapid and significant and was chased with unlabeled RGDyK in a similar manner as adrenal uptake.
Studies using arginine–glycine–aspartate (RGD)-PET agents in cardiovascular diseases have been recently published. The aim of this systematic review was to perform an updated, evidence-based summary about the role of RGD-based PET agents in patients with cardiovascular diseases to better address future research in this setting. Original articles within the field of interest reporting the role of RGD-based PET agents in patients with cardiovascular diseases were eligible for inclusion in this systematic review. A systematic literature search of PubMed/MEDLINE and Cochrane library databases was performed until October 26, 2021. Literature shows an increasing role of RGD-based PET agents in patients with cardiovascular diseases. Overall, two main topics emerged: the infarcted myocardium and atherosclerosis. The existing studies support that αvβ3 integrin expression in the infarcted myocardium is well evident in RGD PET/CT scans. RGD-based PET radiotracers accumulate at the site of infarction as early as 3 days and seem to be peaking at 1–3 weeks post myocardial infarction before decreasing, but only 1 study assessed serial changes of myocardial RGD-based PET uptake after ischemic events. RGD-based PET uptake in large vessels showed correlation with CT plaque burden, and increased signal was found in patients with prior cardiovascular events. In human atherosclerotic carotid plaques, increased PET signal was observed in stenotic compared with non-stenotic areas based on MR or CT angiography data. Histopathological analysis found a co-localization between tracer accumulation and areas of αvβ3 expression. Promising applications using RGD-based PET agents are emerging, such as prediction of remodeling processes in the infarcted myocardium or detection of active atherosclerosis, with potentially significant clinical impact.
Background The primary aims of this study were to compare in patients with esophageal or esophagogastric junction cancers the potential of 68Ga-NODAGA-RGD PET/CT with that of 18F-FDG PET/CT regarding tumoral uptake and distribution, as well as histopathologic examination. Methods Ten 68Ga-NODAGA-RGD and ten 18F-FDG PET/CT were performed in nine prospectively included participants (1 woman; aged 58 ± 8.4 y, range 40–69 y). Maximum SUV (SUVmax) and metabolic tumor volumes (MTV) were calculated. The Mann–Whitney U test and Spearman correlation analysis (ρ) were used. Results 68Ga-NODAGA-RGD PET/CT detected positive uptake in 10 primary sites (8 for primary tumors and 2 for local relapse suspicion), 6 lymph nodes and 3 skeletal sites. 18F-FDG PET/CT detected positive uptake in the same sites but also in 16 additional lymph nodes and 1 adrenal gland. On a lesion-based analysis, SUVmax of 18F-FDG was significantly higher than those of 68Ga-NODAGA-RGD (4.9 [3.7–11.3] vs. 3.2 [2.6–4.2] g/mL, p = 0.014). Only one participant showed a higher SUVmax in an osseous metastasis with 68Ga-NODAGA-RGD as compared to 18F-FDG (6.6 vs. 3.9 g/mL). Correlation analysis showed positive correlation between 18F-FDG and 68Ga-NODAGA-RGD PET parameters (ρ = 0.56, p = 0.012 for SUVmax, ρ = 0.78, p < 0.001 for lesion-to-background ratios and ρ = 0.58, p = 0.024 for MTV). We observed that 18F-FDG uptake was homogenous inside all the confirmed primary sites (n = 9). In contrast, 68Ga-NODAGA-RGD PET showed more heterogenous uptake in 6 out of the 9 confirmed primary sites (67%), seen mostly in the periphery of the tumor in 5 out of the 9 confirmed primary sites (56%), and showed slight extensions into perilesional structures in 5 out of the 9 confirmed primary sites (56%). Conclusions In conclusion, 68Ga-NODAGA-RGD has lower potential in the detection of esophageal or esophagogastric junction malignancies compared to 18F-FDG. However, the results suggest that PET imaging of integrin αvβ3 expression may provide complementary information and could aid in tumor diversity and delineation. Trial registration: Trial registration: NCT02666547. Registered January 28, 2016—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02666547.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.