Rationale: Extracellular matrix (ECM) is a dynamic tissue that contributes to organ integrity and function, and its regulation of cell phenotype is a major aspect of cell biology. However, standard in vitro culture approaches are of unclear physiologic relevance because they do not mimic the compositional, architectural, or distensible nature of a living organ. In the lung, fibroblasts exist in ECM-rich interstitial spaces and are key effectors of lung fibrogenesis. Objectives: To better address how ECM influences fibroblast phenotype in a disease-specific manner, we developed a culture system using acellular human normal and fibrotic lungs. Methods: Decellularization was achieved using treatment with detergents, salts, and DNase. The resultant matrices can be sectioned as uniform slices within which cells were cultured. Measurements and Main Results: We report that the decellularization process effectively removes cellular and nuclear material while retaining native dimensionality and stiffness of lung tissue. We demonstrate that lung fibroblasts reseeded into acellular lung matrices can be subsequently assayed using conventional protocols; in this manner we show that fibrotic matrices clearly promote transforming growth factor-b-independent myofibroblast differentiation compared with normal matrices. Furthermore, comprehensive analysis of acellular matrix ECM details significant compositional differences between normal and fibrotic lungs, paving the way for further study of novel hypotheses. Conclusions: This methodology is expected to allow investigation of important ECM-based hypotheses in human tissues and permits future scientific exploration in an organ-and disease-specific manner.
Engineered polyethylene glycol-maleimide matrices for regenerative medicine exhibit improved reaction efficiency and wider range of Young’s moduli by utilizing maleimide cross-linking chemistry. This hydrogel chemistry is advantageous for cell delivery due to the mild reaction that occurs rapidly enough for in situ delivery, while easily lending itself to “plug-and-play” design variations such as incorporation of enzyme-cleavable cross-links and cell-adhesion peptides.
The mechanical properties of the extracellular matrix have recently been shown to promote myofibroblast differentiation and lung fibrosis. Mechanisms by which matrix stiffness regulates myofibroblast differentiation are not fully understood. The goal of this study was to determine the intrinsic mechanisms of mechanotransduction in the regulation of matrix stiffness-induced myofibroblast differentiation. A well established polyacrylamide gel system with tunable substrate stiffness was used in this study. Megakaryoblastic leukemia factor-1 (MKL1) nuclear translocation was imaged by confocal immunofluorescent microscopy. The binding of MKL1 to the a-smooth muscle actin (a-SMA) gene promoter was quantified by quantitative chromatin immunoprecipitation assay. Normal human lung fibroblasts responded to matrix stiffening with changes in actin dynamics that favor filamentous actin polymerization. Actin polymerization resulted in nuclear translocation of MKL1, a serum response factor coactivator that plays a central role in regulating the expression of fibrotic genes, including a-SMA, a marker for myofibroblast differentiation. Mouse lung fibroblasts deficient in Mkl1 did not respond to matrix stiffening with increased a-SMA expression, whereas ectopic expression of human MKL1 cDNA restored the ability of Mkl1 null lung fibroblasts to express a-SMA. Furthermore, matrix stiffening promoted production and activation of the small GTPase RhoA, increased Rho kinase (ROCK) activity, and enhanced fibroblast contractility. Inhibition of RhoA/ROCK abrogated stiff matrix-induced actin cytoskeletal reorganization, MKL1 nuclear translocation, and myofibroblast differentiation. This study indicates that actin cytoskeletal remodeling-mediated activation of MKL1 transduces mechanical stimuli from the extracellular matrix to a fibrogenic program that promotes myofibroblast differentiation, suggesting an intrinsic mechanotransduction mechanism.Keywords: lung fibrosis; transcription factor; a-smooth muscle actinMyofibroblasts are a key effector cell type that manifests connective tissue remodeling after lung injury (1, 2). These cells are responsible for excessive extracellular matrix (ECM) deposition in idiopathic pulmonary fibrosis (IPF). Fibroblasts and mesenchymal cells are a major cellular source of myofibroblasts (2). Acquisition of a smooth muscle actin (a-SMA) expression characterizes fibroblast-tomyofibroblast differentiation. Recent studies suggest that matrix stiffness, a measure of matrix resistance to mechanical deformation, regulates myofibroblast differentiation (3). Stiff matrix-induced myofibroblast differentiation has been extensively reported in fibroblasts isolated from heart (4), aortic valves (5), lung (6-8), liver (9, 10), and gingiva (11). Despite this, the molecular mechanisms by which matrix stiffness regulates myofibroblast differentiation are not well understood. A previous study demonstrates that myofibroblast contractioninduced matrix latent TGF-b1 activation requires stiffened matrix (7). Because activated T...
At the body surface, skin’s stratified squamous epithelium is challenged by environmental extremes. The surface of the skin is composed of enucleated, flattened surface squames. They derive from underlying, transcriptionally active keratinocytes that display filaggrin-containing keratohyalin granules (KGs) whose function is unclear. Here, we found that filaggrin assembles KGs through liquid-liquid phase separation. The dynamics of phase separation governed terminal differentiation and were disrupted by human skin barrier disease–associated mutations. We used fluorescent sensors to investigate endogenous phase behavior in mice. Phase transitions during epidermal stratification crowded cellular spaces with liquid-like KGs whose coalescence was restricted by keratin filament bundles. We imaged cells as they neared the skin surface and found that environmentally regulated KG phase dynamics drive squame formation. Thus, epidermal structure and function are driven by phase-separation dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.