A series of dipyridodiazepinones have been shown to be potent inhibitors of human immunodeficiency virus-1 (HIV-1) reverse transcriptase (RT). One compound, BI-RG-587, had a Ki of 200 nanomolar for inhibition of HIV-1 RT that was noncompetitive with respect to deoxyguanosine triphosphate. BI-RG-587 was specific for HIV-1 RT, having no effect on feline and simian RT or any mammalian DNA polymerases. BI-RG-587 inhibited HIV-1 replication in vitro as demonstrated by in situ hybridization, inhibition of protein p24 production, and the lack of syncytia formation in cultured human T cell lines and freshly isolated human peripheral blood lymphocytes. Cytotoxicity studies of BI-RG-587 on human cells showed a high therapeutic index (greater than 8000) in culture.
Rhinoviruses belong to the picornavirus family and cause about 50% of common colds. Most rhinoviruses and some coxsackie viruses share a common receptor on human cells. The glycoprotein intercellular adhesion molecule-1 (ICAM-1) has recently been identified as the cellular receptor for the subgroup of rhinoviruses known as the major groups. ICAM-1 is a member of the immunoglobulin supergene family and is a ligand for lymphocyte function-associated antigen-1 (LFA-1); these ICAM-1/LFA-1 interactions are critical to many cell adhesion processes involved in the immunological response. Because anti-ICAM-1 antibodies can block binding of major-group rhinoviruses to cells, we considered that antagonism of virus-receptor interaction might be a way of preventing rhinovirus infection. We have constructed and purified a soluble form of the ICAM-1 molecule, which is normally membrane-bound, and demonstrated that it is a potent and specific inhibitor of rhinovirus infection.
A series of dipyridodiazepinones have been shown to be potent inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. The lead compound, BI-RG-587, had a 50% inhibitory concentration of 84 nM against HIV-1 reverse transcriptase activity. This compound reduced plaque formation of HIV-1 in HeLa cells expressing the CD4 receptor by 50% at 15 nM. BI-RG-587 at comparable concentrations inhibited the production of p24 antigen following the acute infection of CEM T-lymphoblastoid cells or primary human monocyte-derived macrophages with HIV-1. No inhibitory effects against HIV-2 or against three picornaviruses were detected. Zidovudine (3'-azido-3'-deoxythymidine [AZT])-susceptible and AZT-resistant isolates of HIV-1 were equally susceptible to BI-RG-587. AZT and BI-RG-587 exhibited synergistic inhibition of HIV-1BRU at all concentrations examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.