Treatment resistance, relapse and metastasis remain critical issues in some challenging cancers, such as chondrosarcomas. Boron-neutron Capture Therapy (BNCT) is a targeted radiation therapy modality that relies on the ability of boron atoms to capture low energy neutrons, yielding high linear energy transfer alpha particles. We have developed an innovative boron-delivery system for BNCT, composed of multifunctional fluorescent mesoporous silica nanoparticles (B-MSNs), grafted with an activatable cell penetrating peptide (ACPP) for improved penetration in tumors and with Gadolinium for magnetic resonance imaging (MRI) in vivo. Chondrosarcoma cells were exposed in vitro to an epithermal neutron beam after B-MSNs administration. BNCT beam exposure successfully induced DNA damage and cell death, including in radio-resistant ALDH+ cancer stem cells (CSCs), suggesting that BNCT using this system might be a suitable treatment modality for chondrosarcoma or other hard-totreat cancers.
Covalent amphiphilic polyoxometalates generated from alkylphosphonic acids have been synthesized, characterized and monitored by multinuclear NMR spectroscopy. Among them, K3H[γ-SiW10O36(C12H25PO)2] has been successfully used as a surfactant for the stabilization of a Winsor I type microemulsion system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.