Current descriptions of retinal thickness across normal age cohorts are mostly limited to global analyses, thus overlooking spatial variation across the retina and limiting spatial analyses of retinal and optic nerve disease. This retrospective cross-sectional study uses location-specific cluster analysis of 8 × 8 macular average grid-wise thicknesses to quantify topographical patterns and rates of normal, age-related changes in all individual retinal layers of 253 eyes of 253 participants across various age cohorts (n = 23–69 eyes per decade). Most retinal layers had concentric spatial cluster patterns except the retinal nerve fibre layer (RNFL) which displayed a nasal, asymmetric radial pattern. Age-related thickness decline mostly occurred after the late 4th decade, described by quadratic regression models. The ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer nuclear layer + Henle’s fibre layer (ONL+HFL) were significantly associated with age (p < 0.0001 to < 0.05), demonstrating similar rates of thickness decline (mean pooled slope = − 0.07 µm/year), while the IS/OS had lesser mean pooled thickness slopes for all clusters (− 0.04 µm/year). The RNFL, OPL, and RPE exhibited no significant age-related thickness change, and the RNFL were significantly associated with sex. Analysis using spatial clusters compared to the ETDRS sectors revealed more extensive spatial definition and less variability in the former method. These spatially defined, clustered normative data and age-correction functions provide an accessible method of retinal thickness analysis with more spatial detail and less variability than the ETDRS sectors, potentially aiding the diagnosis and monitoring of retinal and optic nerve disease.
PurposeTo evaluate the agreement and accuracy of grading goniophotographs and anterior segment optical coherence tomography (AS-OCT) results for assessment of the anterior chamber angle, and elicit factors driving concordance between perceived grade and ground truth.MethodsThree clinicians evaluated the goniophotographs and AS-OCT results of 75 patients. Graders' impressions of the angle grade, trabecular pigmentation, and iris contour were compared with the ground truth gonioscopic examination result when physically performed by a senior optometrist. Percentage agreement and kappa statistics were calculated. Binary logistic regression was used to elicit factors for accurate grading.ResultsExact angle matches and binary (open or closed) evaluations were above guessing rate for all graders. There was a systematic bias toward underestimating the angle structure across all graders, especially at the superior angle, by approximately 1 ordinal unit. Kappa statistics showed fair-moderate agreement for exact (0.387–0.520) and binary (0.347–0.520) angle evaluations. Agreement was unchanged when using a multimodal approach (0.373–0.523). Factors driving concordance were primarily related to the extremes of the anterior chamber angle configuration (shallow or deep structures, and iris contour). However, prediction models did not fully explain the levels of concordance with the ground truth (maximum R2 amongst models 0.177).ConclusionsAlthough moderate agreement between graders and ground truth could be obtained under binary evaluations, angle grades were generally underestimated. Factors affecting concordance were primarily the extremes of the ground truth angle and iris contour.Translational RelevanceWe highlight factors affecting accuracy of grading goniophotography and AS-OCT images of the anterior chamber angle.
Purpose To examine individual retinal layers’ location-specific patterns of thicknesses in intermediate age-related macular degeneration (iAMD) using optical coherence tomography (OCT). Methods OCT macular cube scans were retrospectively acquired from 84 iAMD eyes of 84 participants and 84 normal eyes of 84 participants propensity-score matched on age, sex, and spherical equivalent refraction. Thicknesses of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer + Henle's fiber layer (ONL +HFL ), inner- and outer-segment layers (IS/OS), and retinal pigment epithelium to Bruch's membrane (RPE-BM) were calculated across an 8 × 8 grid (total 24° × 24° area). Location-specific analysis was performed using cluster (normal) and grid (iAMD) -to-cluster (normal) comparisons. Results In iAMD versus normal eyes, the central RPE-BM was thickened (mean difference ± SEM up to 27.45% ± 7.48%, P < 0.001; up to 7.6 SD-from-normal), whereas there was thinned outer (OPL, ONL +HFL , and non-central RPE-BM, up to −6.76% ± 2.47%, P < 0.001; up to −1.6 SD-from-normal) and inner retina (GCL and IPL, up to −4.83% ± 1.56%, P < 0.01; up to −1.7 SD-from-normal) with eccentricity-based effects. Interlayer correlations were greater against the ONL +HFL (mean |r| ± SEM 0.19 ± 0.03, P = 0.14 to < 0.0001) than the RPE-BM (0.09 ± 0, P = 0.72 to < 0.0001). Conclusions Location-specific analysis suggests altered retinal anatomy between iAMD and normal eyes. These data could direct clinical diagnosis and monitoring of AMD toward targeted locations.
Supplemental digital content is available in the text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.