The opportunistic pathogen Pseudomonas aeruginosa is responsible for systemic infections in immunocompromised individuals and chronic respiratory disease in patients with cystic fibrosis. Cyclic nucleotides are known to play a variety of roles in the regulation of virulence-related factors in pathogenic bacteria. A set of P. aeruginosa genes, encoding proteins that contain putative domains characteristic of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that are responsible for the maintenance of cellular levels of the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) was identified in the annotated genomes of P. aeruginosa strains PAO1 and PA14. Although the majority of these genes are components of the P. aeruginosa core genome, several are located on presumptive horizontally acquired genomic islands. A comprehensive analysis of P. aeruginosa genes encoding the enzymes of c-di-GMP metabolism (DGC- and PDE-encoding genes) was carried out to analyze the function of c-di-GMP in two disease-related phenomena, cytotoxicity and biofilm formation. Analysis of the phenotypes of DGC and PDE mutants and overexpressing clones revealed that certain virulence-associated traits are controlled by multiple DGCs and PDEs through alterations in c-di-GMP levels. A set of mutants in selected DGC- and PDE-encoding genes exhibited attenuated virulence in a mouse infection model. Given that insertions in different DGC and PDE genes result in distinct phenotypes, it seems likely that the formation or degradation of c-di-GMP by these enzymes is in highly localized and intimately linked to particular targets of c-di-GMP action.
This review provides a comprehensive overview of experimental adriamycin nephropathy, including analysis of its strengths and weaknesses, pathogenic mechanisms and practical advice on how best to perform this animal model of chronic kidney disease. ABSTRACT:Adriamycin nephropathy (AN) is a rodent model of chronic kidney disease that has been studied extensively and has enabled a greater understanding of the processes underlying the progression of chronic proteinuric renal disease. AN is characterized by podocyte injury followed by glomerulosclerosis, tubulointerstitial inflammation and fibrosis. Genetic studies have demonstrated a number of loci that alter both risk and severity of renal injury induced by Adriamycin. Adriamycin-induced renal injury has been shown in numerous studies to be modulated by both non-immune and immune factors, and has facilitated further study of mechanisms of tubulointerstitial injury. This review will outline the pharmacological behaviour of Adriamycin, and describe in detail the model of AN, including its key structural characteristics, genetic susceptibility and pathogenesis.
Macrophage infiltration of the kidney is a prominent feature associated with the severity of renal injury and progressive renal failure. To determine the influence of macrophages in renal disease models in the absence of endogenous T and B cells, we performed adoptive transfer of macrophages into severe combined immunodeficient (SCID) mice. In this study, macrophages were isolated from the spleens of BALB/c mice and stimulated with lipopolysaccharide to induce classically activated M1 macrophages or with interleukin-4 (IL-4) and IL-13 to induce alternatively activated M2 macrophages. These macrophages were then infused into SCID mice with adriamycin nephropathy; an in vivo model of chronic inflammatory renal disease analogous to human focal segmental glomerulosclerosis. Mice infused with M1 macrophages had a more severe histological and functional injury, whereas M2 macrophage-induced transfused mice had reduced histological and functional injury. Both M1 and M2 macrophages localized preferentially to the area of injury and maintained their phenotypes even after 4 weeks. The protective effect of M2 macrophages was associated with reduced accumulation and possibly downregulated chemokine and inflammatory cytokine expression of the host infiltrating macrophages. Our findings demonstrate that macrophages not only act as effectors of immune injury but can be induced to provide protection against immune injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.