Over the last decade, several coupled simulation tools have been developed in order to design and optimize floating wind turbines (FWTs). In most of these tools, the aerodynamic modeling is based on quasi‐steady aerodynamic models such as the blade element momentum (BEM). It may not be accurate enough for FWTs as the motion of the platform induces highly unsteady phenomena around the rotor. To address this issue, a new design tool has been developed coupling a seakeeping solver with an unsteady aerodynamic solver based on the free vortex wake (FVW) theory. This tool is here compared with the reference code FAST, which is based on the BEM theory in order to characterize the impact of the aerodynamic model on the seakeeping of a floating horizontal axis wind turbine (HAWT). Aerodynamic solvers are compared for the case of the free floating NREL 5MW HAWT supported by the OC3Hywind SPAR. Differences obtained between the models have been analyzed through a study of the aerodynamic loads acting on the same turbine in imposed harmonic surge and pitch motions. This provides a better understanding of the intrinsic differences between the quasi‐steady and unsteady aerodynamic solvers. The study shows that differences can be observed between the three aerodynamic solvers, especially at high tip speed ratio (TSR) for which unsteady aerodynamic phenomena and complex wake dynamics occur. Observed discrepancies in the predictions of the FWT dynamic response can raise issues when designing such a system with a state‐of‐the‐art design tool.
Depending on the environmental conditions, floating Horizontal Axis Wind Turbines (FHAWTs) may have a very unsteady behaviour. The wind inflow is unsteady and fluctuating in space and time. The floating platform has six Degrees of Freedom (DoFs) of movement. The aerodynamics of the rotor is subjected to many unsteady phenomena: dynamic inflow, stall, tower shadow and rotor/wake interactions. State-of-the-art aerodynamic models used for the design of wind turbines may not be accurate enough to model such systems at sea. For HAWTs, methods such as Blade Element Momentum (BEM) [1] have been widely used and validated for bottom fixed turbines. However, the motions of a floating system induce unsteady phenomena and interactions with its wake that are not accounted for in BEM codes [2]. Several research projects such as the OC3 [3], OC4 [4] and OC5 [5] projects focus on the simulation of FHAWTs. To study the seakeeping of Floating Offshore Wind Turbines (FOWTs), it has been chosen to couple an unsteady free vortex wake aerodynamic solver (CACTUS) to a seakeeping code (InWave [6]). The free vortex wake theory assumes a potential flow but inherently models rotor/wake interactions and skewed rotor configurations. It shows a good compromise between accuracy and computational time. A first code-to-code validation has been done with results from FAST [7]on the FHAWT OC3 test case [3] considering the NREL 5MW wind turbine on the OC3Hywind SPAR platform. The code-to-code validation includes hydrodynamics, moorings and control (in torque and blade pitch). It shows good agreement between the two codes for small amplitude motions, discrepancies arise for rougher sea conditions due to differences in the used aerodynamic models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.