Unmanned airborne and dismounted soldier capability requirements continue to push for reduced size, weight, and power (SWaP) and high sensitivity infrared (IR) imaging in applications that were not previously practical. In response to these needs, Attollo Engineering has developed a 1280x1024, 5μm pixel pitch cooled mid wavelength infrared (MWIR) sensor that pushes the envelope in pixel pitch in addition to a 1280x1024, 10μm pixel sensor dual band sensor with additional sensitivity in the short wavelength infrared (SWIR) in order to exploit SWIR phenomenology including laser see spot functionality. Both of these sensors offer MWIR sensing capabilities but are also able to leverage aspects of Attollo’s detector design to enable SWIR sensing to varying degrees. This class of small pixel cooled, single and dual band IR sensor technology represents advancements in all aspects of the sensor’s design and development, and we will discuss the innovations made at Attollo to enable this capability including epitaxial detector design based on III V compound semiconductors, detector array and focal plane array fabrication, design of a low noise, dual band CTIA/DI readout integrated circuit (ROIC), vacuum dewar packaging, and electronics and firmware design. In this paper we will present on the status of high definition small pixel pitch MWIR and dual band SWIR/MWIR imaging technology at Attollo as it relates to these sensors including design and measurement data and imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.