The utilization of the P+-π-M-N+ photodiode architecture in conjunction with a thick active region can significantly improve long wavelength infrared type-II InAs/GaSb superlattice photodiodes. By studying the effect of the depletion region placement on the quantum efficiency in a thick structure, we achieved a topside illuminated quantum efficiency of 50% for an N-on-P diode at 8.0 μm at 77 K. Both the double heterostructure design and the application of polyimide passivation greatly reduce the surface leakage, giving an R0A of 416 Ω cm2 for a 1% cutoff wavelength of 10.52 μm, a Shot–Johnson detectivity of 8.1×1011 cmHz/W at 77 K, and a background limited operating temperature of 110 K with 300 K background.
The dominant dark current mechanisms are identified and suppressed to improve the performance of midwave infrared InAs/GaSb type-II superlattice photodiodes at high temperatures. The optimized heterojunction photodiode exhibits a quantum efficiency of 50% for 2 μm thick active region without any bias dependence. At 150 K, R0A of 5100 Ω cm2 and specific detectivity of 1.05×1012 cm Hz0.5/W are demonstrated for a 50% cutoff wavelength of 4.2μm. Assuming 300 K background temperature and 2π field of view, the performance of the detector is background limited up to 180 K, which is improved by 25 °C compared to the homojunction photodiode. Infrared imaging using f/2.3 optics and an integration time of 10.02 ms demonstrates a noise equivalent temperature difference of 11 mK at operating temperatures below 120 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.