Bone substitutes are being increasingly used in surgery as over two millions bone grafting procedures are performed worldwide per year. Autografts still represent the gold standard for bone substitution, though the morbidity and the inherent limited availability are the main limitations. Allografts, i.e. banked bone, are osteoconductive and weakly osteoinductive, though there are still concerns about the residual infective risks, costs and donor availability issues. As an alternative, xenograft substitutes are cheap, but their use provided contrasting results, so far. Ceramic-based synthetic bone substitutes are alternatively based on hydroxyapatite (HA) and tricalcium phosphates, and are widely used in the clinical practice. Indeed, despite being completely resorbable and weaker than cortical bone, they have exhaustively proved to be effective. Biomimetic HAs are the evolution of traditional HA and contains ions (carbonates, Si, Sr, Fl, Mg) that mimic natural HA (biomimetic HA). Injectable cements represent another evolution, enabling mininvasive techniques. Bone morphogenetic proteins (namely BMP2 and 7) are the only bone inducing growth factors approved for human use in spine surgery and for the treatment of tibial nonunion. Demineralized bone matrix and platelet rich plasma did not prove to be effective and their use as bone substitutes remains controversial. Experimental cell-based approaches are considered the best suitable emerging strategies in several regenerative medicine application, including bone regeneration. In some cases, cells have been used as bioactive vehicles delivering osteoinductive genes locally to achieve bone regeneration. In particular, mesenchymal stem cells have been widely exploited for this purpose, being multipotent cells capable of efficient osteogenic potential. Here we intend to review and update the alternative available techniques used for bone fusion, along with some hints on the advancements achieved through the experimental research in this field.
Bone fusion represents a challenge in the orthopedics practice, being especially indicated for spine disorders. Spinal fusion can be defined as the bony union between two vertebral bodies obtained through the surgical introduction of an osteoconductive, osteoinductive, and osteogenic compound. Autogenous bone graft provides all these three qualities and is considered the gold standard. However, a high morbidity is associated with the harvest procedure. Intensive research efforts have been spent during the last decades to develop new approaches and technologies for successful spine fusion. In recent years, cell and gene therapies have attracted great interest from the scientific community. The improved knowledge of both mesenchymal stem cell biology and osteogenic molecules allowed their use in regenerative medicine, representing attractive approaches to achieve bone regeneration also in spinal surgery applications. In this review we aim to describe the developing gene- and cell-based bone regenerative approaches as promising future trends in spine fusion.
Three-dimensional (3D) printing is a novel modality with the potential to make a huge impact in the surgical field. The aim of this paper is to provide an overview on the current use of 3D printing in shoulder surgery. We have reviewed the use of this new method in 3 fields of shoulder surgery: shoulder arthroplasty, recurrent shoulder instability and orthopedic shoulder traumatology. In shoulder arthroplasty, several authors have shown that the use of the 3D printer improves the positioning of the glenoid component, even if longer clinical follow-up is needed to determine whether the cost of this system rationalizes the potential improved functional outcomes and decreases glenoid revision rates. In the treatment of anterior shoulder instability, the literature agrees on the fact that the use of the 3D printing can: enhance the dept and size of bony lesions, allowing a patient tailored surgical planning and potentially reducing operative times; allow the production of personalized implants to restore substantial bone loss; restore glenohumeral morphology and instability. In orthopedic trauma, the use of 3D printing can be helpful to increase the understanding of fracture patterns, facilitating a more personalized planning, and can be used for resident training and education. We can conclude the current literature regarding the use of 3D printed models in orthopedic surgery agrees finding objective improvements to preoperative planning and to the surgical procedure itself, by shortening the intraoperative time and by the possibility to develop custom-made, patient-specific surgical instruments, and it suggests that there are tangible benefits for its implementation.
Over the last decade, regenerative medicine has become increasingly popular throughout the scientific community. The poor healing capacity at the tendon-bone interface makes the rotator cuff an appealing target for biologic agents. Adipose derived stem cells are mesenchymal cells with the capacity for self-renewal and multipotential differentiation. They have been recently proposed, both in isolation and as adjuvants to existing surgical therapies, for the treatment of rotator cuff tears. Several studies have been carried out in this research field, starting from the biological characteristics of adipose derived stem cells, their preparation and culture, up to the application in the experimental field on animal models and on humans. The purpose of this study was to provide a state of the art about the current basic science and clinical literature for the effectiveness of adipose derived stem cells in the treatment of rotator cuff tears.
Comparative evaluation of effectiveness and tolerability with polyethylene glycol and sodium picosulfate-magnesium citrate as intestinal preparation agents for colonoscopy Introduction: The effectiveness of colonoscopy depends on multiple factors, being two of the most important ones an adequate bowel preparation and the patient's tolerability to the preparation. Objectives: Compare effectiveness and tolerability of two bowel preparation agents, polyethylene glycol (PEG) and sodium picosulfate/magnesium citrate (SPMC). Patients and Methods: Randomized clinical trial on outpatients that went into colonoscopy in INDISA Clinic. We evaluated effectiveness and tolerability with Boston Bowel Preparation Score (BBPS) and Lawrence questionnaire [composed by Likert scale, two qualitative questions and Visual Analogue Scale (VAS) for pain], respectively. Results: 189 patients, 123 were randomized to PEG and 66 to SPMC. BBPS average in patients in the PEG branch was 7.51 (SD 1.66) and for SPMC 7.12 (SD 1.71) (p = 0.111). Likert scale for evaluating tolerability average for PEG was 0.94 (SD 0.68) and for SPMC 0.63 (SD 0.61) (p = 0.0004). VAS scale for PEG had an average of 7.68 (SD 2.4) and for PSCM 9.04 (SD 1.59) (p < 0.0001). When we asked for workplace absenteeism, there were no significant differences between both groups and when we asked about using the same intestinal preparation in a future colonoscopy there was statistical significance in favor to SPMC (p = 0.026). Conclusions: No differences were noted on effectiveness between the PEG and SPMC bowel preparations. Nevertheless, SPMC appeared to be better tolerated by patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.