A mineral silicate paint has been developed for architectural heritage. To enhance durability, any type of organic additive has been avoided. Potassium silicate was the binder agent intended to give strong adherence and durability to stone and concretes. Incorporation of mainly anatase titanium dioxide was intended to act both as a white, bright pigment and as a photocatalyst. Reflectivity analyses on the paint in the visible-to-near infrared wavelength region show high solar heat reflection. The self-cleaning activity of the mineral paint was evaluated by the degradation of organic dyes under solar light irradiation. Anatase titania was effective in decomposing organic and airborne pollutants with the solar radiation. The optical properties and self-cleaning activity were compared with the organic binder-based paints and commercial paints. Developed paints possess high stability: since they contain only inorganic components that do not fade with exposure to solar radiation, photocatalytic self-cleaning capability further enhances such stability.
In this paper, we report the design of a new experimental apparatus for the study of the foaming process of thermoplastic polymers with physical blowing agents. The novel labscale batch foaming equipment is capable of achieving accurate control of the processing variables, namely, the temperature, the saturation pressure and the pressure drop rate and, furthermore, of allowing the achievement of very high pressure drop rates, the observation of the sample while foaming and the very fast extraction of the foamed sample. By recalling the considerations discussed by Muratani et al. (J Cell Plast 2005; 24: 15), the design converged into a simple, cheap, and very small pressure vessel, thereby denoted as mini-batch. We herein describe the overall design path of the mini-batch, its characteristics, configurations, together with some examples of use with polystyrene and CO 2 as the blowing agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.