Sesamoid bones form within tendons in regions that wrap around bony prominences. They are common in humans but variable in number. Sesamoid development is mediated epigenetically by local mechanical forces associated with skeletal geometry, posture, and muscular activity. In this article we review the literature on sesamoids and explore the question of genetic control of sesamoid development. Examination of radiographs of 112 people demonstrated that the relatively infrequent appearances of the fabella (in the lateral gastrocnemius tendon of the knee) and os peroneum (in the peroneus longus tendon of the foot) are related within individuals (P < 0.01). This finding suggests that the tendency to form sesamoids may be linked to intrinsic genetic factors. Evolutionary character analyses suggest that the formation of these sesamoids in humans may be a consequence of phylogeny. These observations indicate that variations of intrinsic factors may interact with extrinsic mechanobiological factors to influence sesamoid development and evolution.
Sesamoid bones form by the endochondral ossification of sesamoid cartilages. This ossification process is thought to be similar to that responsible for the formation of secondary ossific nuclei in long-bone epiphyses. Sesamoids ossify much later in development than do epiphyses, however, and bone formation within sesamoids often begins by way of multiple ossific nuclei. Endochondral growth and ossification in the formation of secondary ossific nuclei have previously been correlated with distributions of the octahedral shear and hydrostatic stresses generated in vivo within cartilage anlagen. In this study, we used two-dimensional finite element analysis to predict the distributions of octahedral shear and hydrostatic stresses in an idealized model of a sesamoid cartilage subjected to in vivo loading. We examined the influence of sesamoid joint conformity. The distribution of an osteogenic stimulus was calculated with an approach similar to that used to predict epiphyseal ossification. The results suggest that, compared with conforming joints, nonconformity between the sesamoid cartilage and its articulating surface, which arises during early development, produces higher contact pressures within the sesamoid and leads to a thicker articular cartilage layer. For a nonconforming joint surface, the results suggest that ossification is favored anywhere within a broad internal region of the sesamoid, whereas a layer at the articular surface will remain cartilaginous. These findings highlight the subtle differences between ossification processes in epiphyses and sesamoids, indicating that the mechanical stress environment in sesamoids produces a diffuse stimulus leading to the onset of ossification and that the degree of joint nonconformity may influence the thickness of the articular cartilage layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.