Summary
Precise modelling of fuel cells is very important for understanding their functioning. In this work, an application of hybrid interior search algorithm (HISA) is proposed to extract the parameters of fuel cells for their electromechanical equations based on nonlinear current‐voltage characteristics. Proposed hybridised algorithm has been developed using evolutionary mutation and crossover operators so as to enhance the modelling capability of interior search algorithm (ISA). To assess the modelling performance of HISA, parameter extraction of two types of fuel cell models, namely, proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC) have been considered. Modelling performance of HISA, assessed using mean squared error between computed and experimental data, is found to be superior to ISA and several other recently reported prominent optimisation methods. Based on the presented intensive simulation investigations, it is concluded that HISA improves the performance of the basic ISA in terms of fitter solutions, robustness, and convergence rate and therefore offers a promising optimisation technique for parameter extraction of fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.