DeepRacer is a platform for end-to-end experimentation with RL and can be used to systematically investigate the key challenges in developing intelligent control systems. Using the platform, we demonstrate how a 1/18th scale car can learn to drive autonomously using RL with a monocular camera. It is trained in simulation with no additional tuning in physical world and demonstrates: 1) formulation and solution of a robust reinforcement learning algorithm, 2) narrowing the reality gap through joint perception and dynamics, 3) distributed on-demand compute architecture for training optimal policies, and 4) a robust evaluation method to identify when to stop training. It is the first successful large-scale deployment of deep reinforcement learning on a robotic control agent that uses only raw camera images as observations and a model-free learning method to perform robust path planning. We open source our code and video demo on GitHub 2 .
Abstract-Decomposing a complex computational problem into sub-problems, which are computationally simpler to solve individually and which can be combined to produce a solution to the full problem, can efficiently lead to compact and general solutions. Modular neural networks represent one of the ways in which this divide-and-conquer strategy can be implemented. Here we present a co-evolutionary model which is used to design and optimize modular neural networks with taskspecific modules. The model consists of two populations. The first population consists of a pool of modules and the second population synthesizes complete systems by drawing elements from the pool of modules. Modules represent a part of the solution, which co-operates with others in the module population to form a complete solution. With the help of two artificial supervised learning tasks created by mixing two sub-tasks we demonstrate that if a particular task decomposition is better in terms of performance on the overall task, it can be evolved using this co-evolutionary model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.