In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding.
In this study, we investigate the effect of local adaptation to developmental density on male mating success in laboratory populations of Drosophila melanogaster. Mating success is known to be influenced by body condition which can in turn be influenced by local adaptation. We test the hypothesis that males adapted to a given environment have higher mating success when assayed in that environment. We used males selected for adaptation to high larval density and their controls which are reared at low larval density. We grew assay males in low and high densities whereas the focal females (raised at low larval density) used for the experiment belonged to the common ancestor of selected and control populations. We considered selected males grown at high density and control males grown at low density as 'adapted'. Similarly, we considered selected males grown at low density and control males grown at high density as 'nonadapted'. Selected male belonging to a given treatment (larval density) was made to compete with control male of the same treatment for mating with ancestral female. We quantified components of reproductive fitness: mating latency, copulation duration, mating success and number of progeny sired by the 'adapted' and 'nonadapted' males. The results show that local adaptation does not lead to higher mating success in populations adapted to their own larval rearing environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.