Two nanoreservoirs based on non-functionalized (MCM-41) and carboxylate-functionalized (MCM-41-COO−) loaded with the anticancer drug doxorubicin (DOX) and capped by quaternary ammonium pillar[5]arene (P[5]A) nanogates were constructed.
The development of more efficient and greener catalytic strategies for the upgrading of biomass to value-added chemicals is crucial to achieve a more sustainable future. In recent years, cutting-edge single-atom...
An alternating magnetic field (AMF)-stimuli responsive nanodevice based on magnetic nanoparticles (MNP) functionalized with water-soluble carboxylate-substituted pillar[5]arene (CP[5]A), namely MNP-CP[5]A, as a multiplatform for cancer treatment has been designed. MNP-CP[5]A was loaded with doxorubicin (DOX), showing a loading capacity of 9.5 mg g-1. The nanodevice demonstrated good colloidal stability, superparamagnetic behavior, and was capable to generate detectable heat in solution induced by AMF application. DOX release, monitored by ultraviolet-visible (UV-Vis) spectroscopy, was investigated by varying the temperature (37 and 45 °C) without AMF and in the presence of AMF (frequency (f) = 307 kHz, field amplitude (H) = 200 Oe, 45 °C) at pH = 7.4. Thermo-induced DOX release without AMF was 1.9% (1.8 μg mL-1) and 2.3% (3.3 μg mL-1) at 37, and 45 °C within 50 min, respectively. In an AMF DOX release increased to 5.7% (8.2 μg mL-1) within 50 min. Therefore, MNP-CP[5]A-DOX works as a chemo-hyperthermia nanodevice.
Furfural is a platform molecule that can be catalytically converted using a cascade series of reactions into levulinic esters, essential compounds used as fuel additives. Bifunctional catalysts containing Lewis and Brønsted acid sites such as zeolites are commonly used for these conversions. However, microporous zeolites often present diffusional restriction due to the size similarity of furfural and other molecules to the zeolites’ micropores. Thus, incorporating mesopores in these materials through post-synthetic protocols is a promising pathway to circumventing these limitations. This study presents the creation of hierarchical beta and mordenite using Si or Al removal and their employment in the furfural conversion to isopropyl levulinate (PL). Mordenite zeolite did not produce satisfactory mesopores, while the beta was more efficient in generating them by both acid and alkaline treatments. Beta zeolite treated in an alkaline solution presented larger mesopores (14.9 and 34.0 nm), maintaining a total acidity value close to its parent zeolite and a higher Lewis/Brønsted ratio. The combination of these features led to an improved diffusion of bulkier products and the highest furfural conversion (94%) and PL selectivity (90%), suggesting that a post-modification of beta zeolites produced efficient catalysts for upgrading abundantly available furfural.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.