A unit disk graph is the intersection graph of n congruent disks in the plane. Dominating sets in unit disk graphs are widely studied due to their applicability in wireless ad-hoc networks. Because the minimum dominating set problem for unit disk graphs is NP-hard, numerous approximation algorithms have been proposed in the literature, including some PTASs. However, since the proposal of a linear-time 5-approximation algorithm in 1995, the lack of efficient algorithms attaining better approximation factors has aroused attention. We introduce an O(n + m) algorithm that takes the usual adjacency representation of the graph as input and outputs a 44/9-approximation. This approximation factor is also attained by a second algorithm, which takes the geometric representation of the graph as input and runs in O(n log n) time regardless of the number of edges. Additionally, we propose a 43/9approximation which can be obtained in O(n 2 m) time given only the graph's adjacency representation. It is noteworthy that the dominating sets obtained by our algorithms are also independent sets.
Numerous approximation algorithms for problems on unit disk graphs have been proposed in the literature, exhibiting a sharp trade-off between running times and approximation ratios. We introduce a variation of the known shifting strategy that allows us to obtain linear-time constant-factor approximation algorithms for such problems. To illustrate the applicability of the proposed variation, we obtain results for three well-known optimization problems. Among such results, the proposed method yields linear-time (4 + ε)-approximations for the maximum-weight independent set and the minimum dominating set of unit disk graphs, thus bringing significant performance improvements when compared to previous algorithms that achieve the same approximation ratios. Finally, we use axis-aligned rectangles to illustrate that the same method may be used to derive linear-time approximations for problems on other geometric intersection graph classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.