Let $X, Y$ be Banach spaces, τ an infinite cardinal and $1 \leq p < \infty $. We extend a result by E. Oja by showing that if $X$ has a boundedly complete unconditional basis and either $X \widehat{\otimes}_{g_p} Y$ or $X \widehat{\otimes}_{\varepsilon _p} Y$ contains a complemented copy of $c_0(\tau )$, then $Y$ contains a complemented copy of $c_0(\tau )$. We show also that if α is a uniform crossnorm, $X \widehat{\otimes}_\alpha Y$ contains a (complemented) copy of $c_0(\tau )$ and the cofinality of τ is strictly greater than the density of $X$, then $Y$ also contains a (complemented) copy of $c_0(\tau )$. As an application, we obtain a result concerning complemented copies of $\ell _1(\tau )$ in $X \widehat{\otimes}_\alpha Y$.
The goal of this work is twofold. First, we study the complemented copies of c 0 (τ) in Banach spaces, where τ is an innite cardinal. We extend to the uncountable case a classical result by T. Schulmprecht that characterizes the complemented copies of c 0 in a Banach space X. We use this new characterization to extend results by G. Emmanuele, F. Bombal, D. Leung and F. Räbiger concerning the complemented copies of c 0 in the classical Banach spaces p (I, X), where p ∈ [1, ∞] and I is a non-empty set. We also obtain a new result involving the complemented copies of c 0 (τ) in C 0 (K, X) spaces, where K is a locally compact Hausdor space. Next, we turn our attention to a vector-valued extension of the classical Banach-Stone theorem obtained by K. Jarosz. Studying several constants introduced by R. James, J. Schäffer, M. Baronti, E. Casini and P. Pappini, we obtain a new relationship between the moduli of convexity of X and X * , which has independent interest. We then apply this relationship to prove a new X-valued generalization of the Banach-Stone theorem that simultaneously extends the aforementioned result by Jarosz and also shows that this result is, in fact, a consequence of a theorem obtained recently by F. Cidral, E. Galego and M. Rincón-Villamizar. Keywords: c 0 (τ) spaces, C 0 (K, X) spaces, complemented copies, generalization of the Banach-Stone theorem, James constant, moduli of convexity of a Banach space and its dual. v vi xiv INTRODUÇÃO Lidando com esses problemas, provaremos também uma nova conexão entre os módulos de convexidade de X e de X * (Teorema 6.15), que possui interesse independente. No Capítulo 1 recordamos denições e resultados preliminares e xamos a notação utilizada no decorrer do trabalho. Estudamos brevemente os conceitos de cópias e cópias complementadas de espaços de Banach, somas arbitrárias de números reais, medidas e integração vetoriais e famílias fracamente nulas, fraca *-nulas e fracamente incondicionalmente somáveis em espaços de Banach. Também vamos recordar as principais propriedades dos espaços p (I, X), C 0 (K, X) e c 0 (τ), que serão nossos objetos de estudo nos capítulos posteriores. No Capítulo 2 iniciamos o estudo das cópias complementadas de c 0 (τ) em espaços de Banach. Como mencionamos, o objetivo desse capítulo é provar o Teorema 2.4, que caracteriza as cópias complementadas de c 0 (τ) em um espaço de Banach X em termos de uma família equivalente à base canônica de c 0 (τ) em X e de uma família fraca *-nula no dual de X. Este resultado estende ao caso não-enumerável um resultado obtido por T. Schlumprecht em [42] envolvendo as cópias complementadas de c 0. Colhemos os frutos do Teorema 2.4 nos Capítulos 3, 4 e 5. Estudamos a relação entre as cópias complementadas de c 0 (τ) em X e nos espaços C 0 (K, X), p (I, X) (p ∈ [1, ∞)), e ∞ (I, X), respectivamente. Finalmente, o Capítulo 6 é dedicado à análise de algumas extensões vetoriais do Teorema de Banach-Stone. Vamos estudar a relação entre diversos parâmetros introduzidos por R. James, J. Schäer, M. Baronti, E. Cas...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.