Amplification of sequences from Streptomyces venezuelae ISP5230 genomic DNA using PCR with primers based on conserved prokaryotic pabB sequences gave two main products. One matched pabAB, a locus previously identified in S. venezuelae. The second closely resembled the conserved pabB sequence consensus and hybridized with a 3 8 kb NcoI fragment of S. venezuelae ISP5230 genomic DNA. Cloning and sequence analysis of the 3 8 kb fragment detected three ORFs, and their deduced amino acid sequences were used in BLAST searches of the GenBank database. The ORF1 product was similar to PabB in other bacteria and to the PabB domain encoded by S. venezuelae pabAB. The ORF2 product resembled PabA of other bacteria. ORF3 was incomplete ; its deduced partial amino acid sequence placed it in the MocR group of GntR-type transcriptional regulators. Introducing vectors containing the 3 8 kb NcoI fragment of S. venezuelae DNA into pabA and pabB mutants of Escherichia coli, or into the Streptomyces lividans pab mutant JG10, enhanced sulfanilamide resistance in the host strains. The increased resistance was attributed to expression of the pair of discrete translationally coupled p-aminobenzoic acid biosynthesis genes (designated pabB/pabA) cloned in the 3 8 kb fragment. These represent a second set of genes encoding 4-amino-4-deoxychorismate synthase in S. venezuelae ISP5230. In contrast to the fused pabAB set previously isolated from this species, they do not participate in chloramphenicol biosynthesis, but like pabAB they can be disrupted without affecting growth on minimal medium. The gene disruption results suggest that S. venezuelae may have a third set of genes encoding PABA synthase.
The pdx-4 mutation in Streptomyces venezuelae ISP5230 confers a growth requirement for pyridoxal (pdx) and is a marker for the genetically mapped cluster of genes associated with chloramphenicol biosynthesis. A gene regulating salvage synthesis of vitamin B6 cofactors in S. venezuelae was cloned by transforming a pdx-4 mutant host with the plasmid vector pDQ101 carrying a library of wild-type genomic DNA fragments, and by selecting for complementation of the host's pdx requirement. However, the corresponding replicative plasmid could not be isolated. Southern hybridizations and transduction analysis indicated that the complementing plasmid had integrated into the chromosome ; after excision by a second crossover, the plasmid failed to propagate. To avoid loss of the recombinant vector, a pdxdependent Streptomyces lividans mutant, KAA1, with a phenotype matching that of S. venezuelae pdx-4, was isolated for use as the cloning host. Introduction of pIJ702 carrying an S. venezuelae genomic library into S. lividans KAA1, and selection of prototrophic transformants, led to the isolation of a stable recombinant vector containing a 25 kb S. venezuelae DNA fragment that complemented requirements for pdx in both S. venezuelae and S. lividans mutants. Sequence analysis of the cloned DNA located an intact ORF with a deduced amino acid sequence that, in its central and C-terminal regions resembled type-I aminotransferases. The N-terminal region of the cloned DNA fragment aligned closely with distinctive helix-turn-helix motifs found near the N termini of GntR family transcriptional regulators. The overall deduced amino acid sequence of the cloned DNA showed 73 % end-to-end identity to a putative GntR-type regulator cloned in cosmid 6D7 from the Streptomyces coelicolor A3(2) genome. This location is close to that of pdxA, the first pdx marker in S. coelicolor A3(2) identified and mapped genetically in Sir David Hopwood's laboratory. The S. venezuelae gene and S. coelicolor pdxA are postulated to be homologues regulating vitamin B6 coenzyme synthesis from pdx.
VINING, L. C. 1970. Effect of tryptophan on alkaloid biosynthesis in cultures of a Claviceps species.Can. J. Microbial. 16: 473480. Addition of tryptophan to cultures of Claviceps strain HLX 123 caused a large increase in alkaloid production. For maximum effect a supplement of at least 250 mg/l was required within 1 day after inoculation. When ~-tryptophan-B-l4C was used the labeled amino acid accumulated in the mycelium until alkaloid synthesis began, near the end of the growth phase. Intracellular tryptophan was then rapidly incorporated into alkaloids which were excreted into the culture fluid. L-Tryptophan-e-14C added to cultures during the period of rapid alkaloid synthesis was efficiently incorporated into alkaloids, but caused only a small increase in yield. The results suggest that tryptophan stimulates alkaloid production mainly through an increase in activity of the alkaloid-synthesizing enzyme system. The role of tryptophan in the regulatory process is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.