Fast and accurate positioning and swing minimization of heavy loads in crane manipulation are demanding and, at the same time, conflicting tasks. Accurate load positioning is primarily limited by the existence of a nonlinear friction effect, especially in the low speed region. In this paper the authors propose a new control scheme for 3D tower crane, that consists of a tensor product model transformation based nonlinear feedback controller, with an additional neural network based friction compensator. Tensor product based controller is designed using linear matrix inequalities utilizing a parameter varying Lyapunov function. Neural network parameters adaptation law is derived using Lyapunov stability analysis. The simulation and experimental results on a 3D laboratory crane model are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.