Purpose Adipose tissue dysfunction is at the center of metabolic dysfunctions associated with obesity. Through studies in isolated adipocytes and mouse models, ATP-binding cassette transporter A1 (ABCA1) expression in the adipose tissue has been shown to regulate high-density lipoprotein (HDL) cholesterol levels in the circulation and insulin sensitivity at both adipose tissue and whole-body levels. We aimed to explore the possible link between ABCA1 expression in the adipose tissue and metabolic derangements associated with obesity in humans. Patients and methods This exploratory study among individuals who were lean (body mass index [BMI]: 22.3±0.34 kg/m 2 , n=28) and obese (BMI: 44.48±5.3 kg/m 2 , n=34) compared the expression of ABCA1, adiponectin and GLUT4 (SLC2A4) in visceral and subcutaneous adipose tissue using quantitative real-time PCR and immunohistochemistry. Homeostatic model assessment for insulin resistance (HOMA-IR) and adipose tissue insulin resistance (adipo-IR) were used as insulin resistance markers. Results Visceral adipose tissue from individuals who were obese had significantly lower ABCA1 ( P =0.04 for mRNA and protein) and adiponectin ( P =0.001 for mRNA) expression compared to that from lean individuals. Subcutaneous adipose tissue did not show any significant difference in the expression. When individuals were divided into insulin-sensitive (IS) and insulin-resistant (IR) groups based on HOMA-IR, IR individuals had lower ABCA1 ( P =0.0001 for mRNA and P =0.009 for protein) expression compared to IS individuals in visceral adipose tissue, but not in subcutaneous adipose tissue. The difference was significant after adjusting for age, gender and BMI. ABCA1 mRNA expression in visceral adipose tissue correlated negatively with both HOMA-IR ( r =−0.44, P =0.0003) and adipo-IR ( r =−0.35, P =0.005) after adjusting for age, gender and BMI. ABCA1 expression in either visceral or subcutaneous adipose tissue did not have any significant correlation with HDL cholesterol levels or mean adipocyte area. Conclusion Obesity and insulin resistance are associated with lower expression of ABCA1 in visceral adipose tissue in humans.
High-density lipoprotein (HDL) comprises a heterogeneous group of particles differing in size, density, and composition. HDL cholesterol (HDL-C) levels have long been suggested to indicate cardiovascular risk, inferred from multiple epidemiological studies. The failure of HDL-C targeted interventions and genetic studies has raised doubts on the atheroprotective role of HDL-C. The current consensus is that HDL-C is neither a biomarker nor a causative agent of cardiovascular disorders. With better understanding of the complex nature of HDL which comprises a large number of proteins and lipids with unique functions, recent focus has shifted from HDL quantity to HDL quality in terms of atheroprotective functions. The current research is focused on developing laboratory assays to assess HDL functions for cardiovascular risk prediction. Also, HDL mimetics designed based on the key determinants of HDL functions are being investigated to modify cardiovascular risk. Improving HDL functions by altering its composition is the key area of future research in HDL biology to reduce cardiovascular risk.
Background: Recent studies emphasize the importance of HDL function over HDL cholesterol measurement, as an important risk for cardiovascular diseases (CVD). We compared the HDL function of patients with acute coronary syndrome (ACS) and healthy controls. Methods: We measured cholesterol efflux capacity of HDL using THP-1 macrophages labelled with fluorescently tagged (BODIPY) cholesterol. PON1 activities toward paraoxon and phenyl acetate were assessed by spectrophotometric methods. Results:We recruited 150 ACS patients and 110 controls. The HDL function of all patients during acute phase and at six month follow-up was measured. The mean age of the patients and controls was 51.7 and 43.6 years respectively. The mean HDL cholesterol/apolipoprotein A-I levels (ratio) of patients during acute phase, follow-up and of controls were 40.2 mg/dl/ 112.5 mg/dl (ratio = 0.36), 38.3 mg/dl/ 127.2 mg/dl (ratio = 0.30) and 45.4 mg/dl/ 142.1 mg/dl (ratio = 0.32) respectively. The cholesterol efflux capacity (CEC) of HDL was positively correlated with apolipoprotein A-I levels during acute phase (r = 0.19, p = 0.019), follow-up (r = 0.26, p = 0.007) and of controls (r = 0.3, p = 0.0012) but not with HDL-C levels (acute phase: r = 0.07, p = 0.47; follow-up: r = 0.1, p = 0.2; control: r = 0.02, p = 0.82). Higher levels of cholesterol efflux capacity, PON1 activity and apolipoprotein A-I were associated with lower odds of development of ACS. We also observed that low CEC is associated with higher odds of having ACS if PON1 activity of HDL is also low and vice versa.Conclusion: ACS is associated with reduced HDL functions which improves at follow-up. The predicted probability of ACS depends upon individual HDL functions and the interactions between them.
Background Bariatric surgery can alleviate cardiovascular risk via effects on cardiovascular disease (CVD) risk factors such as diabetes mellitus, hypertension, and dyslipidemia. Our study aimed to assess the cholesterol efflux capacity (CEC) of HDL as a negative risk factor for CVD in individuals with obesity and identify the factors associated with improvement in CEC 3 months following bariatric surgery. Methods We recruited 40 control individuals (mean BMI of 22.2 kg/m2) and 56 obese individuals (mean BMI of 45.9 kg/m2). The biochemical parameters, inflammatory status and CEC of HDL was measured for the obese individuals before bariatric surgery and at 3 months after surgery. The CEC was measured using a cell-based cholesterol efflux system of BODIPY-cholesterol-labelled THP-1 macrophages. Results A significant reduction in BMI (− 17%, p < 0.001), resolution of insulin sensitivity (HOMA2-IR = − 23.4%, p = 0.002; Adipo IR = − 16%, p = 0.009) and inflammation [log resistin = − 6%, p = 0.07] were observed 3 months post-surgery. CEC significantly improved 3 months after surgery [Pre: 0.91 ± 0.13; Post: 1.02 ± 0.16; p = 0.001] despite a decrease in HDL-C levels. The change in CEC correlated with the change in apo A-I (r = 0.39, p = 0.02) and adiponectin levels (r = 0.35, p = 0.03). Conclusion The results suggest that improvements in CEC, through improvement in adipose tissue health in terms of adipokine secretion and insulin sensitivity could be an important pathway in modulating obesity-related CVD risk.
1. Antileucoprotease, being sensitive to oxidative inactivation, can be produced by recombinant techniques. Via site-directed mutagenesis, two mutants of recombinant antileucoprotease were produced in which one or more of the oxidation-sensitive methionine residues were replaced by leucine: in rALP242, methionine-73 was replaced by leucine, and in rALP231, leucine was substituted for four methionine residues. In vitro, native antileucoprotease and the recombinant antileucoprotease preparations have similar inhibitory characteristics towards human neutrophil elastase. We hypothesized that replacement of methionine residues in the antileucoprotease molecule would result in a reduced oxidation sensitivity of the mutants. 2. After incubation of recombinant antileucoprotease and its mutants with increasing dosages of cis-platinum(II)diammine dichloride, we observed that native antileucoprotease and recombinant antileucoprotease were inactivated by this reagent to the same extent. Compared with this, rALP242 was less inactivated, whereas the inhibitory capacity of rALP231 was not influenced by cis-platinum(II)diammine dichloride at all. 3. After incubation of recombinant antileucoprotease, rALP242 and rALP231 with triggered polymorphonuclear leucocytes, which are thought to produce an excess of oxidants, we measured residual inhibitory activities towards human neutrophil elastase of 10%, 55% and 87%, respectively. 4. In vivo, the inhibitory effects of intratracheally administered rALP242 and rALP231 towards human-neutrophil-elastase-induced emphysema were significantly greater than that of recombinant antileucoprotease. There were no significant differences between the mutants.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.