GL13K is a short (13 amino acid) antimicrobial peptide derived from the parotid secretory protein. GL13K has been found to exhibit anti-inflammatory and antibacterial activities in physiological salt conditions. We investigated the mechanism of interaction of GL13K, with model membranes comprising 1, 2-dioleoylphosphatidylcholine (DOPC) and 1, 2-dioleoylphosphatidylglycerol (DOPG) using various biophysical and imaging techniques. Circular dichroism studies showed that GL13K adopts a β-sheet structure in the presence of negatively charged DOPG liposomes while it retains its random coil structure with zwitterionic DOPC liposomes. GL13K did not cause any fusion of these liposomes but was able to selectively disrupt the negatively charged membranes of DOPG leading to vesicular leakage. There was no or minimal evidence of GL13K interaction with DOPC liposomes, however an analysis of supported lipid bilayers (SLBs) using atomic force microscopic (AFM) imaging and dual polarization interferometry (DPI) suggested that GL13K can interact with the surface of a DOPC planar bilayer. In the case of DOPG bilayers, AFM and DPI clearly showed membrane thinned regions where a portion of lipid molecules has been removed. These results suggest that the mechanism of GL13K action on bacterial membranes involves localized removal of lipid from the membrane via peptide-induced micellization.
Surface chemistry is an important factor for quality control during production of nanomaterials and for controlling their behavior in applications and when released into the environment.
Surface chemistry is a critical factor for determining the behavior of a nanomaterial after incorporation in composites, devices, and biomedical products, and is also important for nanotoxicology studies. We have developed an optimized protocol for dissolution of aminated silicas and determination of functional-group contents by quantitative 1 H NMR (qNMR) analysis of the released amines. A number of variables were optimized for the dissolution protocol, including the base concentration, mass of silica, time, temperature, and method of sample agitation, in order to achieve adequate NMR signals for quantification. The protocol was tested using nanoparticles from a single commercial supplier with sizes ranging from 20 to 120 nm that were functionalized with 3-aminopropyl groups. Interestingly the batch-to-batch variability for some sizes of these aminated silicas was as high as 50%. Amine contents measured by a ninhydrin colorimetric assay were typically ∼20% lower than those measured by qNMR, consistent with measurement of only ninhydrin-reagent accessible amines. The dissolution−qNMR protocol was compatible with aminated silicas from other commercial suppliers, and in these cases, an even larger variability in surface coverage was observed. Silica nanoparticles with longer-chain amines and variable amine loadings were synthesized to demonstrate the ability to quantify amines with more complex structures and to assess the limit of quantification for the dissolution−qNMR method. Finally, the stability of the aminated nanoparticles was examined. Loss of 3-aminopropyl groups occurred in water at room temperature and was significantly more rapid at higher temperatures. Amine loss increased with increasing surface coverage and was slower for long-chain amines, consistent with studies of amine stability on planar silica. Overall, this work highlights the importance of developing methods for quantifying surface functionalization, particularly given the variability in surface coverage for commercial samples, and for ensuring that the amine group is stable under its usage conditions.
Thermogravimetric analysis (TGA) coupled with evolved gas analysis-FT-IR has been examined as a potential method to study the functional group content for surface modified silica nanoparticles.
The enolase from Streptococcus pyogenes (Str enolase F137L/E363G) is a homo-octamer shaped like a donut. Plasminogen (Pgn) is a monomeric protein composed of seven discrete separated domains organized into a lock washer. The enolase is known to bind Pgn. In past work we searched for conditions in which the two proteins would bind to one another. The two native proteins in solution would not bind under any of the tried conditions. We found that if the structures were perturbed binding would occur. We stated that only the non-native Str enolase or Pgn would interact such that we could detect binding. We report here the results of a series of dual polarization interferometry (DPI) experiments coupled with atomic force microscopy (AFM), isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and fluorescence. We show that the critical condition for forming stable complexes of the two native proteins involves Str enolase binding to a surface. Surfaces that attract Str enolase are a sufficient condition for binding Pgn. Under certain conditions, Pgn adsorbed to a surface will bind Str enolase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.