Surface chemistry is an important factor for quality control during production of nanomaterials and for controlling their behavior in applications and when released into the environment.
Surface chemistry is a critical factor for determining the behavior of a nanomaterial after incorporation in composites, devices, and biomedical products, and is also important for nanotoxicology studies. We have developed an optimized protocol for dissolution of aminated silicas and determination of functional-group contents by quantitative 1 H NMR (qNMR) analysis of the released amines. A number of variables were optimized for the dissolution protocol, including the base concentration, mass of silica, time, temperature, and method of sample agitation, in order to achieve adequate NMR signals for quantification. The protocol was tested using nanoparticles from a single commercial supplier with sizes ranging from 20 to 120 nm that were functionalized with 3-aminopropyl groups. Interestingly the batch-to-batch variability for some sizes of these aminated silicas was as high as 50%. Amine contents measured by a ninhydrin colorimetric assay were typically ∼20% lower than those measured by qNMR, consistent with measurement of only ninhydrin-reagent accessible amines. The dissolution−qNMR protocol was compatible with aminated silicas from other commercial suppliers, and in these cases, an even larger variability in surface coverage was observed. Silica nanoparticles with longer-chain amines and variable amine loadings were synthesized to demonstrate the ability to quantify amines with more complex structures and to assess the limit of quantification for the dissolution−qNMR method. Finally, the stability of the aminated nanoparticles was examined. Loss of 3-aminopropyl groups occurred in water at room temperature and was significantly more rapid at higher temperatures. Amine loss increased with increasing surface coverage and was slower for long-chain amines, consistent with studies of amine stability on planar silica. Overall, this work highlights the importance of developing methods for quantifying surface functionalization, particularly given the variability in surface coverage for commercial samples, and for ensuring that the amine group is stable under its usage conditions.
Thermogravimetric analysis (TGA) coupled with evolved gas analysis-FT-IR has been examined as a potential method to study the functional group content for surface modified silica nanoparticles.
Ferritins are natural nanoscale structures composed with 24 subunits endowed with similar three-dimensional structures. The iron is stored in the form of ferrihydrite phosphate in the hollow spherical ferritin shells. Prussian blue nanoparticles (PBNPs) have been certified a kind of mimetic enzyme with the advantages of stability, high catalytic activity and low prices. In this context, we designed a strategy to synthesize PBNPs of small size using ferritin as template and meanwhile retain the biological properties of ferritin. Our results show the resulting nanostructures (Prussian blue modified ferritin nanoparticles, PB-Ft NPs) got very small size and relatively high catalytic activity, furthermore, PB-Ft NPs successfully combined the intrinsic enzyme mimetic activity of PBNPs and the specificity of ferritin. Peroxidase-like activity which fits well the Michaelis-Menten kinetics was found strongly depending on pH, temperature and the concentration of PB-Ft NPs. Then a sensitive method for glucose detection was developed using glucose oxidase (GOx) and PB-Ft NPs. The consequence of Enzyme-linked immunosorbent assay (ELISA) shows PB-Ft NPs possess both specificity and peroxidase-like activity, which suggests that PB-Ft NPs can be served as a useful reagent in some biological detections.
Optical detectors with single-photon sensitivity and large dynamic range would facilitate a variety of applications. Specifically, the capability of extending operation wavelengths into the mid-infrared region is highly attractive. Here we implement a mid-infrared frequency upconversion detector for counting and resolving photons at 3 μm. Thanks to the spectrotemporal engineering of the involved optical fields, the mid-infrared photons could be spectrally translated into the visible band with a conversion efficiency of 80%. In combination with a silicon avalanche photodiode, we obtained unprecedented performance with a high overall detection efficiency of 37% and a low noise equivalent power of 1.8 × 10 − 17 W / Hz 1 / 2 . Furthermore, photon-number-resolving detection at mid-infrared wavelengths was demonstrated, for the first time to our knowledge, with a multipixel photon counter. The implemented upconversion detector exhibited a maximal resolving photon number up to 9 with a noise probability per pulse of 0.14% at the peak detection efficiency. The achieved photon counting and resolving performance might open up new possibilities in trace molecule spectroscopy, sensitive biochemical sensing, and free-space communications, among others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.