Chemical conjugates comprising synthetic Toll-like receptor ligands (TLR-L) covalently bound to antigenic synthetic long peptides (SLP) are attractive vaccine modalities, which can induce robust CD8þ T-cell immune responses. Previously, we have shown that the mechanism underlying the power of TLR-L SLP conjugates is improved delivery of the antigen together with a dendritic cell activation signal. In the present study, we have expanded the approach to tumor-specific CD4 þ as well as CD8 þ T-cell responses and in vivo studies in two nonrelated aggressive tumor models. We show that TLR2-L SLP conjugates have superior mouse CD8 þ and CD4
M.bovis BCG vaccination against tuberculosis (TB) notoriously displays variable protective efficacy in different human populations. In non-human primate studies using rhesus macaques, despite efforts to standardise the model, we have also observed variable efficacy of BCG upon subsequent experimental M. tuberculosis challenge. In the present head-to-head study, we establish that the protective efficacy of standard parenteral BCG immunisation varies among different rhesus cohorts. This provides different dynamic ranges for evaluation of investigational vaccines, opportunities for identifying possible correlates of protective immunity and for determining why parenteral BCG immunisation sometimes fails. We also show that pulmonary mucosal BCG vaccination confers reduced local pathology and improves haematological and immunological parameters post-infection in animals that are not responsive to induction of protection by standard intra-dermal BCG. These results have important implications for pulmonary TB vaccination strategies in the future.
The way the MHC II-associated proteolytic system of APC handles exogenous antigen is key to the stimulation of the T cell in infections and immunotherapy settings. Using a cell-impermeable, activity-based probe (ABP) for papain cathepsins, the most abundant type of endocytic proteases, we have simulated the encounter between exogenous antigen and endocytic proteases in live human monocyte-derived dendritic cells (MO-DC). Although cathepsin S (CatS), -B, -H, and -X were active in DC-derived endocytic fractions in vitro, the peptide-size tracer was routed selectively to active CatS after internalization by macropinocytosis. Blocking of the vacuolar adenosine triphosphatase abolished this CatS-selective targeting, and LPS-induced maturation of DC resulted in degradation of active CatS. Conjugation of the ABP to a protein facilitated the delivery to endocytic proteases and resulted in labeling of sizable amounts of CatB and CatX, although CatS still remained the major protease reached by this construct. Conjugation of the probe to a cell-penetrating peptide (CPP) routed the tracer to the entire panel of intracellular cathepsins, independently from endocytosis or LPS stimulation. Thus, different means of internalization result in differential targeting of active cathepsins in live MO-DC. CPP may serve as vehicles to target antigen more efficiently to protease-containing endocytic compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.