Activation of oncogenes or inhibition of WEE1 kinase deregulates cyclin-dependent kinase (CDK) activity and leads to replication stress; however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibition of WEE1 kinase rapidly increases initiation of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted. Furthermore, addition of nucleosides counteracts the effects of unscheduled CDK activity on fork speed and DNA DSB formation. Finally, we show that WEE1 regulates the ionizing radiation (IR)-induced S-phase checkpoint, consistent with its role in control of replication initiation. In conclusion, these results suggest that deregulated CDK activity, such as that occurring following inhibition of WEE1 kinase or activation of oncogenes, induces replication stress and loss of genomic integrity through increased firing of replication origins and subsequent nucleotide shortage. DNA replication is tightly monitored to ensure that the genome is replicated precisely once per cell cycle and that DNA replication is complete before mitosis begins. Conditions for DNA synthesis are rarely ideal, and a number of obstacles must often be dealt with, such as a damaged DNA template and shortage of deoxynucleoside triphosphates (dNTPs), to allow replication fork progression. Stalling replication forks pose serious threats to genome integrity because they can collapse through disassembly of the replication complex and break (6,11,24). Such damaged forks may subsequently undergo incorrect repair, leading to genetic changes like chromosomal rearrangements (6,24). Recent data have also revealed that activated oncogenes can induce DNA replication stress, defined here as replication-associated DNA damage (2, 3, 10). Oncogene-induced replication stress can lead to additional tumor-promoting genetic changes, but it may also serve as a tumor barrier by activation of cell cycle arrest, apoptosis, and/or senescence during early tumor development (32).WEE1 and CHK1 kinases have major roles in suppressing DNA replication stress (4,23,27,42), and attenuation of their function can contribute to carcinogenesis and cause cell death (40). The massive amount of DNA breakage is likely mediated by DNA endonuclease activity, and recent studies suggest that this is mediated by the endonuclease MUS81 (12,14,15). Notably, the mechanisms by which oncogenes or inhibition of checkpoint kinases can lead to endonuclease-mediated DNA breakage are poorly understood. It is also not fully understood if these breaks also play a role in inducing fork stalling or if they are temporally delayed events secondary to the fork stalling.As both oncogenes and checkpoint kinases are regulators of cyclin-dependent kinase (CDK) activity, we previously proposed that most of the DNA replication str...
To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main regulators of G2 checkpoint maintenance following DNA-damage.
BackgroundMalignant melanoma has an increasing incidence rate and the metastatic disease is notoriously resistant to standard chemotherapy. Loss of cell cycle checkpoints is frequently found in many cancer types and makes the cells reliant on compensatory mechanisms to control progression. This feature may be exploited in therapy, and kinases involved in checkpoint regulation, such as Wee1 and Chk1/2, have thus become attractive therapeutic targets.MethodsIn the present study we combined a Wee1 inhibitor (MK1775) with Chk1/2 inhibitor (AZD7762) in malignant melanoma cell lines grown in vitro (2D and 3D cultures) and in xenografts models.ResultsOur in vitro studies showed that combined inhibition of Wee1 and Chk1/2 synergistically decreased viability and increased apoptosis (cleavage of caspase 3 and PARP), which may be explained by accumulation of DNA-damage (increased expression of γ-H2A.X) - and premature mitosis of S-phase cells. Compared to either inhibitor used as single agents, combined treatment reduced spheroid growth and led to greater tumour growth inhibition in melanoma xenografts.ConclusionsThese data provide a rationale for further evaluation of the combination of Wee1 and Chk1/2 inhibitors in malignant melanoma.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1474-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.