SummaryBubR1 is a central component of the spindle assembly checkpoint that inhibits progression into anaphase in response to improper kinetochore-microtubule interactions. In addition, BubR1 also helps stabilize kinetochore-microtubule interactions by counteracting the Aurora B kinase but the mechanism behind this is not clear. Here we show that BubR1 directly binds to the B56 family of protein phosphatase 2A (PP2A) regulatory subunits through a conserved motif that is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and polo-like kinase 1 (Plk1). Two highly conserved hydrophobic residues surrounding the serine 670 Cdk1 phosphorylation site are required for B56 binding. Mutation of these residues prevents the establishment of a proper metaphase plate and delays cells in mitosis. Furthermore, we show that phosphorylation of serines 670 and 676 stimulates the binding of B56 to BubR1 and that BubR1 targets a pool of B56 to kinetochores. Our data suggest that BubR1 counteracts Aurora B kinase activity at improperly attached kinetochores by recruiting B56-PP2A phosphatase complexes.
Activation of oncogenes or inhibition of WEE1 kinase deregulates cyclin-dependent kinase (CDK) activity and leads to replication stress; however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibition of WEE1 kinase rapidly increases initiation of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted. Furthermore, addition of nucleosides counteracts the effects of unscheduled CDK activity on fork speed and DNA DSB formation. Finally, we show that WEE1 regulates the ionizing radiation (IR)-induced S-phase checkpoint, consistent with its role in control of replication initiation. In conclusion, these results suggest that deregulated CDK activity, such as that occurring following inhibition of WEE1 kinase or activation of oncogenes, induces replication stress and loss of genomic integrity through increased firing of replication origins and subsequent nucleotide shortage. DNA replication is tightly monitored to ensure that the genome is replicated precisely once per cell cycle and that DNA replication is complete before mitosis begins. Conditions for DNA synthesis are rarely ideal, and a number of obstacles must often be dealt with, such as a damaged DNA template and shortage of deoxynucleoside triphosphates (dNTPs), to allow replication fork progression. Stalling replication forks pose serious threats to genome integrity because they can collapse through disassembly of the replication complex and break (6,11,24). Such damaged forks may subsequently undergo incorrect repair, leading to genetic changes like chromosomal rearrangements (6,24). Recent data have also revealed that activated oncogenes can induce DNA replication stress, defined here as replication-associated DNA damage (2, 3, 10). Oncogene-induced replication stress can lead to additional tumor-promoting genetic changes, but it may also serve as a tumor barrier by activation of cell cycle arrest, apoptosis, and/or senescence during early tumor development (32).WEE1 and CHK1 kinases have major roles in suppressing DNA replication stress (4,23,27,42), and attenuation of their function can contribute to carcinogenesis and cause cell death (40). The massive amount of DNA breakage is likely mediated by DNA endonuclease activity, and recent studies suggest that this is mediated by the endonuclease MUS81 (12,14,15). Notably, the mechanisms by which oncogenes or inhibition of checkpoint kinases can lead to endonuclease-mediated DNA breakage are poorly understood. It is also not fully understood if these breaks also play a role in inducing fork stalling or if they are temporally delayed events secondary to the fork stalling.As both oncogenes and checkpoint kinases are regulators of cyclin-dependent kinase (CDK) activity, we previously proposed that most of the DNA replication str...
WEE1 and CHK1 jointly regulate Cdk activity to prevent DNA damage during replication.
Degradation of the histone H4 methyltransferase SET8, which regulates chromosome compaction and genomic integrity, is regulated by the CRL4(CDT2) ubiquitin ligase to facilitate DNA replication and repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.