Although lysosomes perform a number of essential cellular functions, damaged lysosomes represent a potential hazard to the cell. Such lysosomes are therefore engulfed by autophagic membranes in the process known as lysophagy, which is initiated by recognition of luminal glycoprotein domains by cytosolic lectins such as Galectin-3. Here, we show that, under various conditions that cause injury to the lysosome membrane, components of the endosomal sorting complex required for transport (ESCRT)-I, ESCRT-II, and ESCRT-III are recruited. This recruitment occurs before that of Galectin-3 and the lysophagy machinery. Subunits of the ESCRT-III complex show a particularly prominent recruitment, which depends on the ESCRT-I component TSG101 and the TSG101-and ESCRT-III-binding protein ALIX. Interference with ESCRT recruitment abolishes lysosome repair and causes otherwise reversible lysosome damage to become cell lethal. Vacuoles containing the intracellular pathogen Coxiella burnetii show reversible ESCRT recruitment, and interference with this recruitment reduces intravacuolar bacterial replication. We conclude that the cell is equipped with an endogenous mechanism for lysosome repair which protects against lysosomal damage-induced cell death but which also provides a potential advantage for intracellular pathogens.
The endosomal sorting complex required for transport (ESCRT) machinery mediates cargo sorting, membrane deformation and membrane scission on the surface of endosomes, generating intraluminal vesicles (ILVs) to degrade signaling receptors. By live-cell imaging of individual endosomes in human cells, we find that ESCRT proteins are recruited in a repetitive pattern: ESCRT-0 and -I show a gradual and linear recruitment and dissociation, whereas ESCRT-III and its regulatory ATPase VPS4 display fast and transient dynamics. Electron microscopy shows that ILVs are formed consecutively, starting immediately after endocytic uptake of cargo proteins and correlating with the repeated ESCRT recruitment waves, unraveling the timing of ILV formation. Clathrin, recruited by ESCRT-0, is required for timely ESCRT-0 dissociation, efficient ILV formation, correct ILV size and cargo degradation. Thus, cargo sorting and ILV formation occur by concerted, coordinated and repetitive recruitment waves of individual ESCRT subcomplexes and are controlled by clathrin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.