Antibiotic-resistant tuberculosis poses a global threat, causing the deaths of hundreds of thousands of people annually. While whole-genome sequencing (WGS), with its unprecedented level of detail, promises to play an increasingly important role in diagnosis, data analysis is a daunting challenge. Here, we present a simple-to-use web service (free for academic use at http://phyresse .org). Delineating both lineage and resistance, it provides state-of-the-art methodology to life scientists and physicians untrained in bioinformatics. It combines elaborate data processing and quality control, as befits human diagnostics, with a treasure trove of validated resistance data collected from well-characterized samples in-house and worldwide.
Analyzing whole-genome sequencing data of Mycobacterium tuberculosis complex (MTBC) isolates in a standardized workflow enables both comprehensive antibiotic resistance profiling and outbreak surveillance with highest resolution up to the identification of recent transmission chains. Here, we present MTBseq, a bioinformatics pipeline for next-generation genome sequence data analysis of MTBC isolates. Employing a reference mapping based workflow, MTBseq reports detected variant positions annotated with known association to antibiotic resistance and performs a lineage classification based on phylogenetic single nucleotide polymorphisms (SNPs). When comparing multiple datasets, MTBseq provides a joint list of variants and a FASTA alignment of SNP positions for use in phylogenomic analysis, and identifies groups of related isolates. The pipeline is customizable, expandable and can be used on a desktop computer or laptop without any internet connection, ensuring mobile usage and data security. MTBseq and accompanying documentation is available from .
Whole-genome sequencing (WGS) has the potential to accelerate drug-susceptibility testing (DST) to design appropriate regimens for drug-resistant tuberculosis (TB). Several recently developed automated software tools promise to standardize the analysis and interpretation of WGS data. We assessed five tools (CASTB, KvarQ, Mykrobe Predictor TB, PhyResSE, and TBProfiler) with regards to DST and phylogenetic lineage classification, which we compared with phenotypic DST, Sanger sequencing, and traditional typing results for a collection of 91 strains. The lineage classifications by the tools generally only differed in the resolution of the results. However, some strains could not be classified at all and one strain was misclassified. The sensitivities and specificities for isoniazid and rifampicin resistance of the tools were high, whereas the results for ethambutol, pyrazinamide, and streptomycin resistance were more variable. False-susceptible DST results were mainly due to missing mutations in the resistance catalogues that the respective tools employed for data interpretation. Notably, we also found cases of false-resistance because of the misclassification of polymorphisms as resistance mutations. In conclusion, the performance of current WGS analysis tools for DST is highly variable. Sustainable business models and a shared, high-quality catalogue of resistance mutations are needed to ensure the clinical utility of these tools.
Rapid and accurate drug susceptibility testing (DST) is essential for the treatment of multi- and extensively drug-resistant tuberculosis (M/XDR-TB). We compared the utility of genotypic DST assays with phenotypic DST (pDST) using Bactec 960 MGIT or Löwenstein-Jensen to construct M/XDR-TB treatment regimens for a cohort of 25 consecutive M/XDR-TB patients and 15 possible anti-TB drugs. Genotypic DST results from Cepheid GeneXpert MTB/RIF (Xpert) and line probe assays (LPAs; Hain GenoType MTBDRplus 2.0 and MTBDRsl 2.0) and whole-genome sequencing (WGS) were translated into individual algorithm-derived treatment regimens for each patient. We further analyzed if discrepancies between the various methods were due to flaws in the genotypic or phenotypic test using MIC results. Compared with pDST, the average agreement in the number of drugs prescribed in genotypic regimens ranged from just 49% (95% confidence interval [CI], 39 to 59%) for Xpert and 63% (95% CI, 56 to 70%) for LPAs to 93% (95% CI, 88 to 98%) for WGS. Only the WGS regimens did not contain any drugs to which pDST showed resistance. Importantly, MIC testing revealed that pDST likely underestimated the true rate of resistance for key drugs (rifampin, levofloxacin, moxifloxacin, and kanamycin) because critical concentrations (CCs) were too high. WGS can be used to rule in resistance even in M/XDR strains with complex resistance patterns, but pDST for some drugs is still needed to confirm susceptibility and construct the final regimens. Some CCs for pDST need to be reexamined to avoid systematic false-susceptible results in low-level resistant isolates.
According to the World Health Organization (WHO), tuberculosis is the leading cause of death attributed to a single microbial pathogen worldwide. In addition to the large number of patients affected by tuberculosis, the emergence of Mycobacterium tuberculosis drug-resistance is complicating tuberculosis control in many high-burden countries. During the past 5 years, the global number of patients identified with multidrug-resistant tuberculosis (MDR-TB), defined as bacillary resistance at least against rifampicin and isoniazid, the two most active drugs in a treatment regimen, has increased by more than 20% annually. Today we experience a historical peak in the number of patients affected by MDR-TB. The management of MDR-TB is characterized by delayed diagnosis, uncertainty of the extent of bacillary drug-resistance, imprecise standardized drug regimens and dosages, very long duration of therapy and high frequency of adverse events which all translate into a poor prognosis for many of the affected patients. Major scientific and technological advances in recent years provide new perspectives through treatment regimens tailor-made to individual needs. Where available, such personalized treatment has major implications on the treatment outcomes of patients with MDR-TB. The challenge now is to bring these adances to those patients that need them most.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.