Context Phyllanthus emblica L. (Euphorbiaceae) (amla), Manilkara zapota L.P. Royen (Sapotaceae) (sapota) and silymarin are reported to contain antioxidant effects. However, information on other biological activities relating to the anti-aging properties is limited. Objective To compare in vitro antioxidants, anti-collagenase (MMP-1 and MMP-2) and anti-elastase properties as well as the phenolic and flavonoid contents of amla, sapota and silymarin as potential anti-aging ingredients. Materials and methods The ethanol amla and sapota fruit extracts were prepared by three cycles of maceration with 24 h duration each. The total phenolic (TPC) and flavonoid (TFC) contents were determined. The antioxidant capacity was evaluated by DPPH and ABTS assays. The effects of MMP-1, MMP-2 and elastase inhibitions were determined by using the EnzChek Õ assay kits (Molecular-Probes, Eugene, OR). Results Amla exhibited the highest in TPC (362.43 ± 11.2 mg GAE/g) while silymarin showed the highest in TFC (21.04 ± 0.67 mg QE/g). Results of antioxidant activity by DPPH and ABTS methods showed that amla possessed the most potent capacity with IC 50 values of 1.70 ± 0.07 and 4.45 ± 0.10 mg/mL, respectively. Highest inhibitions against MMP-1, MMP-2 and elastase were detected for sapota with IC 50 values of 89.61 ± 0.96, 86.47 ± 3.04 and 35.73 ± 0.61 mg/mL, respectively. Discussion and conclusion Test extracts offered anti-aging properties in different mechanisms. Amla showed the highest phenolic content and antioxidant property with moderate anticollagenase. Silymarin exhibited measurable flavonoid content with anti-elastase effect. Sapota showed the highest collagenase and elastase inhibitions with moderate antioxidant effect. Thus, extracts might be added as a mixture to gain the overall anti-aging effects.ARTICLE HISTORY
Abstract. Silymarin is a standardized extract from Silybum marianum seeds, known for its many skin benefits such as antioxidant, anti-inflammatory, and immunomodulatory properties. In this study, the potential of several microemulsion formulations for dermal delivery of silymarin was evaluated. The pseudo-ternary phase diagrams were constructed for the various microemulsion formulations which were prepared using glyceryl monooleate, oleic acid, ethyl oleate, or isopropyl myristate as the oily phase; a mixture of Tween 20®, Labrasol®, or Span 20® with HCO-40® (1:1 ratio) as surfactants; and Transcutol® as a cosurfactant. Oil-inwater microemulsions were selected to incorporate 2% w/w silymarin. After six heating-cooling cycles, physical appearances of all microemulsions were unchanged and no drug precipitation occurred. Chemical stability studies showed that microemulsion containing Labrasol® and isopropyl myristate stored at 40°C for 6 months showed the highest silybin remaining among others. The silybin remainings depended on the type of surfactant and were sequenced in the order of: Labrasol®>Tween 20®>Span 20®. In vitro release studies showed prolonged release for microemulsions when compared to silymarin solution. All release profiles showed the best fits with Higuchi kinetics. Non-occlusive in vitro skin permeation studies showed absence of transdermal delivery of silybin. The percentages of silybin in skin extracts were not significantly different among the different formulations (p>0.05). Nevertheless, some silybin was detected in the receiver fluid when performing occlusive experiments. Microemulsions containing Labrasol® also were found to enhance silymarin solubility. Other drug delivery systems with occlusive effect could be further developed for dermal delivery of silymarin.
Context Psidium guajava L. (Myrtaceae) leaf contains a wide variety of bioactive compounds that contribute valuable effects on human well-being. Objective This study investigates the influence of guava leaf extract-menthol toner on thermoregulation, including perspiration, skin temperature, and recovery heart rate. Materials and methods This randomised, placebo-controlled clinical trial assessed the effects of the guava leaf extract-menthol toner and placebo with a 1-week washout period. Sixty-four participants were enrolled. The participants exercised on a treadmill until a 75% heart rate reserve was achieved for 5 min, followed by a 5 min post-exercise rest period. The skin temperature and heart rate were then measured before 5 mL of the testing product was sprayed to specific areas of the body, left it for 30 sec before wiped off. Post-exercise perspiration and skin temperatures were collected by sweat patches and measured by the Skin-thermometer ST500, respectively. A 20 min heart rate monitoring period started 10 min after the exercise and measured every 2 min intervals. Results Use of the toner significantly reduced post-exercise perspiration to approximately half of the baseline and placebo use values ( p < 0.05). Furthermore, relative heart rate changes showed no significant differences among the tests ( p > 0.05). Skin temperature was also unaffected ( p > 0.05). Discussion and Conclusion Guava leaf extract-menthol toner reduced perspiration by astringent effects but did not influence heat dissipation and did not affect cardiovascular mechanism compared to the controls. Additional cleaning with guava leaf extract-menthol toner could offer better hygiene after a workout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.