We present a dataset of behavioral data recorded from 61 children diagnosed with Autism Spectrum Disorder (ASD). The data was collected during a large-scale evaluation of Robot Enhanced Therapy (RET). The dataset covers over 3000 therapy sessions and more than 300 hours of therapy. Half of the children interacted with the social robot NAO supervised by a therapist. The other half, constituting a control group, interacted directly with a therapist. Both groups followed the Applied Behavior Analysis (ABA) protocol. Each session was recorded with three RGB cameras and two RGBD (Kinect) cameras, providing detailed information of children's behavior during therapy. This public release of the dataset comprises body motion, head position and orientation, and eye gaze variables, all specified as 3D data in a joint frame of reference. In addition, metadata including participant age, gender, and autism diagnosis (ADOS) variables are included. We release this data with the hope of supporting further data-driven studies towards improved therapy methods as well as a better understanding of ASD in general.
This paper investigates the role that kinematic features play in human action similarity judgments. The results of three experiments with human participants are compared with the computational model that solves the same task. The chosen model has its roots in developmental robotics and performs action classification based on learned kinematic primitives. The comparative experimental results show that both model and human participants can reliably identify whether two actions are the same or not. Specifically, most of the given actions could be similarity judged based on very limited information from a single feature domain (velocity or spatial). Both velocity and spatial features were however necessary to reach a level of human performance on evaluated actions. The experimental results also show that human performance on an action identification task indicated that they clearly relied on kinematic information rather than on action semantics. The results show that both the model and human performance are highly accurate in an action similarity task based on kinematic-level features, which can provide an essential basis for classifying human actions.
Understanding which features humans rely on -in visually recognizing action similarity is a crucial step towards a clearer picture of human action perception from a learning and developmental perspective. In the present work, we investigate to which extent a computational model based on kinematics can determine action similarity and how its performance relates to human similarity judgments of the same actions. To this aim, twelve participants perform an action similarity task, and their performances are compared to that of a computational model solving the same task. The chosen model has its roots in developmental robotics and performs action classification based on learned kinematic primitives. The comparative experiment results show that both the model and human participants can reliably identify whether two actions are the same or not. However, the model produces more false hits and has a greater selection bias than human participants. A possible reason for this is the particular sensitivity of the model towards kinematic primitives of the presented actions. In a second experiment, human participants' performance on an action identification task indicated that they relied solely on kinematic information rather than on action semantics. The results show that both the model and human performance are highly accurate in an action similarity task based on kinematic-level features, which can provide an essential basis for classifying human actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.