Steel defects are a frequent problem in steel companies. Proper quality control can reduce quality problems arising from steel defects. Nowadays, steel defects can detect by automation methods that utilize certain algorithms. Deep learning can help the steel defect detection algorithm become more sophisticated. In this study, we use deep learning CNN with Xception architecture to detect steel defects from images taken from high-frequency and high-resolution cameras. There are two techniques used, and both produce respectively 0.94% and 0.85% accuracy. The Xception architecture used in this case shows optimal and stable performance in the process and its results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.