Nuclear, mitochondrial and cytoplasmic signal transducer and activator of transcription 3 (STAT3) regulates many cellular processes, e.g., the transcription or opening of mitochondrial permeability transition pore, and its activity depends on the phosphorylation of Tyr705 and/or Ser727 sites. In the heterogeneous network of cardiac cells, STAT3 promotes cardiac muscle differentiation, vascular element formation and extracellular matrix homeostasis. Overwhelming evidence suggests that STAT3 is beneficial for the heart, plays a role in the prevention of age-related and postpartum heart failure, protects the heart against cardiotoxic doxorubicin or ischaemia/reperfusion injury, and is involved in many cardioprotective strategies (e.g., ischaemic preconditioning, perconditioning, postconditioning, remote or pharmacological conditioning). Ischaemic heart disease is still the leading cause of death worldwide, and many cardiovascular risk factors contribute to the development of the disease. This review focuses on the effects of various cardiovascular risk factors (diabetes, aging, obesity, smoking, alcohol, depression, gender, comedications) on cardiac STAT3 under non-ischaemic baseline conditions, and in settings of ischaemia/reperfusion injury with or without cardioprotective strategies.
Coronary artery disease (CAD) is one of the leading cause of mortality worldwide. Several risk factors including unhealthy lifestyle, genetic background, obesity, diabetes, hypercholesterolemia, hypertension, smoking, age, etc. contribute to the development of coronary atherosclerosis and subsequent coronary artery disease. Inflammation plays an important role in coronary artery disease development and progression. Pro-inflammatory signals promote the degradation of tryptophan via the kynurenine pathway resulting in the formation of several immunomodulatory metabolites. An unbalanced kynurenic pathway has been implicated in the pathomechanisms of various diseases including CAD. Significant improvements in detection methods in the last decades may allow simultaneous measurement of multiple metabolites of the kynurenine pathway and such a thorough analysis of the kynurenine pathway may be a valuable tool for risk stratification and determination of CAD prognosis. Nevertheless, imbalance in the activities of different branches of the kynurenine pathway may require careful interpretation. In this review, we aim to summarize clinical evidence supporting a possible use of kynurenine pathway metabolites as clinical biomarkers in various manifestations of CAD.
Background. In folk medicine, common chickweed (Stellaria media) has traditionally been applied for the treatment of hypercholesterolemia; however, there is no firm experimental proof to support the rationale of this practice. Therefore, we aimed to assess the efficacy and safety of Stellaria media tea in hypercholesterolemic rats. Materials and Methods. Adult male Wistar rats were divided into 3 groups. The (i) control group received standard laboratory chow, the (ii) hypercholesterolemic group received cholesterol-enriched diet, and the (iii) chickweed-treated hypercholesterolemic group received cholesterol-enriched diet and 100 mg/kg body weight Stellaria media tea lyophilizate for 8 weeks. Blood samples were collected to determine serum lipid profile as well as liver and kidney function, and echocardiography was performed to assess cardiac morphology and function. Results. Cholesterol-enriched diet significantly increased serum total cholesterol, LDL- and HDL-cholesterol levels, but did not affect triacylglycerol concentrations. The addition of chickweed to the diet did not cause any significant change in serum lipid profile or body weight increase. Liver and kidney functions were unaltered and cardiac morphology and function were not changed due to Stellaria media tea lyophilizate. Conclusion. Although chickweed does not seem to be toxic, our results do not support the rationale of its use in the treatment of hypercholesterolemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.