Listeria monocytogenes and Salmonella spp. are considered important foodborne pathogens that are commonly associated with foods of animal origin. The aim of this study was to perform molecular characterization of L. monocytogenes and Salmonella spp. isolated from biofilms of cattle and poultry slaughterhouses located in the Federal District and State of Goiás, Brazil. Fourteen L. monocytogenes isolates and one Salmonella sp. were detected in poultry slaughterhouses. No isolates were detected in cattle slaughterhouses. All L. monocytogenes isolates belonged to lineage II, and 11 different pulsotypes were detected. Pulsed-field gel electrophoresis analysis revealed the dissemination of two strains within one plant, in addition to the regional dissemination of one of them. The Salmonella isolate was identified via whole genome sequencing as Salmonella enterica serovar Minnesota ST548. In the sequence analysis, no premature stop codons were detected in the inlA gene of Listeria. All isolates demonstrated the ability to adhere to Caco-2 cells, while 50% were capable of invading them. Antimicrobial resistance was detected in 57.1% of the L. monocytogenes isolates, and resistance to sulfonamide was the most common feature. The tetC, ermB, and tetM genes were detected, and four isolates were classified as multidrug-resistant. Salmonella sp. was resistant to nine antimicrobials and was classified as multidrug-resistant. Resistance genes qnrB19, blaCMY-2, aac(6’)-Iaa, sul2, and tetA, and a mutation in the parC gene were detected. The majority (78.5%) of the L. monocytogenes isolates were capable of forming biofilms after incubation at 37°C for 24 h, and 64.3% were capable of forming biofilms after incubation at 12°C for 168 h. There was no statistical difference in the biofilm-forming capacity under the different evaluated conditions. Salmonella sp. was capable of forming biofilms at both tested temperatures. Biofilm characterization was confirmed by collecting the samples consistently, at the same sampling points, and by assessing biofilm formation in vitro. These results highlight the potential risk of cross-contamination in poultry slaughterhouses and the importance of surveillance and pathogen control maintenance programs within the meat production industry.
This study aimed to verify the presence of Listeria monocytogenes, Salmonella spp., and Escherichia coli in two Brazilian swine slaughterhouses, as well as to perform antibiograms, detect virulence and antimicrobial resistance genes, and evaluate the in vitro biofilm-forming capability of bacterial isolates from these environments. One Salmonella Typhi isolate and 21 E. coli isolates were detected, while L. monocytogenes was not detected. S. Typhi was isolated from the carcass cooling chamber’s floor, resistant to several antimicrobials, including nalidixic acid, cefazolin, chloramphenicol, doxycycline, streptomycin, gentamicin, tetracycline, and sulfonamide, and contained resistance genes, such as tet(B), tet(C), tet(M), and ampC. It also showed moderate biofilm-forming capacity at 37°C after incubating for 72 h. The prevalence of the 21 E. coli isolates was also the highest on the carcass cooling chamber floor (three of the four samplings [75%]). The E. coli isolates were resistant to 12 of the 13 tested antimicrobials, and none showed sensitivity to chloramphenicol, an antimicrobial prohibited in animal feed since 2003 in Brazil. The resistance genes MCR-1, MCR-3, sul1, ampC, clmA, cat1, tet(A), tet(B), and blaSHV, as well as the virulence genes stx-1, hlyA, eae, tir α, tir β, tir γ, and saa were detected in the E. coli isolates. Moreover, 5 (23.8%) and 15 (71.4%) E. coli isolates presented strong and moderate biofilm-forming capacity, respectively. In general, the biofilm-forming capacity increased after incubating for 72 h at 10°C. The biofilm-forming capacity was the lowest after incubating for 24 h at 37°C. Due to the presence of resistance and virulence genes, multi-antimicrobial resistance, and biofilm-forming capacity, the results of this study suggest a risk to the public health as these pathogens are associated with foodborne diseases, which emphasizes the hazard of resistance gene propagation in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.