Adherence of microorganisms to damaged heart tissue is a crucial event in the pathogenesis of infective endocarditis. In the present study, we investigated the role of the FimA protein as a potential virulence factor associated with Streptococcus parasanguis endocarditis. FimA is a 36-kDa surface protein that is a recognized adhesin in the oral cavity where it mediates adherence to the salivary pellicle. An insertion mutant and a deletion mutant of S. parasanguis were employed in the rat model of endocarditis to determine the relevance of FimA in endocarditis pathogenesis. Catheterized rats were infected with either the fimA deletion mutant VT929, the fimA insertion mutant VT930, or the isogenic, wild-type S. parasanguis FW213. Rats inoculated with FW213 developed endocarditis more frequently (50.9%) than animals inoculated with either the deletion mutant (2.7%) or the insertion mutant (7.6%) (P < 0.001). A series of in vitro assays were performed to explore the mechanism(s) by which FimA enhanced the infectivity of S. parasanguis. FimA did not inhibit the uptake or the subsequent killing of S. parasanguis by phagocytic granulocytes. Similarly, FimA did not play a role in the adherence to or the aggregation of platelets. Significant differences were noted between FW213 and VT929 (P < 0.05) and FW213 and VT930 (P < 0.001) in their abilities to bind to fibrin monolayers. The mean percent adherence of FW213 to fibrin monolayers (2.1%) was greater than those of VT929 (0.5%) and VT930 (0.12%). Taken together, these results indicate that FimA is a major virulence determinant associated with S. parasanguis endocarditis and further suggest that its role is associated with initial colonization of damaged heart tissue.
Fatal infections were observed despite treatment with beta-lactamase-stable antibiotics. The risk for infection or colonization with beta-lactamase-producing, high-level gentamicin-resistant E. faecalis was strongly associated with severe underlying disease (acute physiology and chronic health evaluation [APACHE] II score, greater than 6) and previous antibiotic treatment. These results may be useful in targeting high-risk patients for infection-control interventions.
,-Lactamase-producing (BL+), aminoglycoside-resistant (AR) Enterococcus faecalis is endemic in our hospital, having caused widespread colonization and infection. Suitable therapy for infections caused by these organisms has been problematic. We compared the antimicrobial and bactericidal activities, by broth macrodilution and time-kill methods, of several antibiotics, alone and in combination, against BL+, AR isolates of E. faecalis and determined the transmissibility of antibiotic resistance markers. Ampicillin-sulbactam, imipenem, daptomycin, and ciprofloxacin were the most active antibiotics with MICs for 90% of isolates tested of 2, 1, 2, and 1 ,LgIml, respectively, against inocula of 103 and 105 CFU/ml. Little inoculum effect was noted with imipenem, vancomycin, daptomycin, or ciprofloxacin, while the addition of sulbactamn to ampicillin partially inhibited the effect of the increased inoculum. Penicillin-sulbactam and ampicillin-sulbactam combinations in a 2:1 ratio were most frequently bactericidal (-3-3og10-unit decrease in bacterial titers at 24 h for 13 of 20 isolates), followed by daptomycin (8 of 20 isolates) and ciprofloxacin (2 of 20 isolates). Bactericidal activity was not demonstrated for imipenem or teicoplanin. I-Lactamase production and aminoglycoside resistance were associated with a 60-to 65-MDa plasmid which was easily transferred to a plasmid-free E.faecalis recipient. The 840-bp j-lactamase gene probe hybridized to purified plasmid DNA from BL' donor isolates ofE. faecalis and transconjugants but not from BL-isolates. Ampicillin-sulbactam and daptomycin (an investigational antibiotic) seem to be reasonable choices for the empiric therapy of presumed enterococcal infections in hospitals in which BL+, AR E. faecalis strains are isolated. Their use should ideally be supported by tests for bactericidal activity.Despite the widespread use of penicillin for many decades, the first 3-lactamase-producing (BL+) strain of Enterococcus faecalis was not isolated until 1983 (10). Since then, additional isolates have been reported sporadically from widely separated geographic areas (4, 9, [13][14][15]. Most BL+ isolates have demonstrated high-level aminoglycoside resistance because of the. presence of aminoglycoside-inactivating enzymes (4, 9, 13-15). The production of both 3-lactamase and aminoglycoside-inactivating enzymes is mediated by plasmid-borne genes and can be cotransferred to suitable recipients (9,10,13). While the emergence of BL+, aminoglycoside-resistant (AR) E. faecalis isolates is an ominous evolutionary event and would seem to abrogate standard forms of therapy, i.e., combinations of P-lactam and aminoglycoside antibiotics, few clinical infections have been reported (12, 16).BL+, AR E. faecalis isolates are endemic in our hospital, accounting for approximately 11% of all enterococci recently isolated in the microbiology laboratory. Both colonization and severe clinical infections have been observed (21). The isolation of large numbers of such isolates at a single institution has affor...
Streptococcus gordonii, a member of the human indigenous oral microflora, colonizes smooth tooth surfaces and contributes to dental plaque formation. Although it is not recognized as being a cariogenic pathogen, it may cause endocarditis following invasion of the bloodstream. Using allelic exchange mutagenesis, we have constructed a mutant of S. gordonii (Challis) which is defective in its single functional glucosyltransferase gene and, hence, is unable to synthesize glucan exopolymers from sucrose. When examined in a rat endocarditis model, the sucrose-grown mutant did not differ significantly from S. gordonii wild-type, suggesting that glucan polymers did not contribute to infectivity. This result was in striking contrast to that previously observed with a polymer-defective S. mutans mutant.
Streptococcus gordonii, a member of the human indigenous oral microflora, colonizes smooth tooth surfaces and contributes to dental plaque formation. Although it is not recognized as being a cariogenic pathogen, it may cause endocarditis following invasion of the bloodstream. Using allelic exchange mutagenesis, we have constructed a mutant of S. gordonii (Challis) which is defective in its single functional glucosyltransferase gene and, hence, is unable to synthesize glucan exopolymers from sucrose. When examined in a rat endocarditis model, the sucrose-grown mutant did not differ significantly from S. gordonii wild-type, suggesting that glucan polymers did not contribute to infectivity. This result was in striking contrast to that previously observed with a polymer-defective S. mutans mutant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.