Development of behavioral tolerance is one of the processes by which living organisms adjust to changes in their internal and external environments. The search for neurochemical mechanisms underlying such processes requires the testing of many hypotheses. The present study was designed to examine the possible involvement of certain subcellular events. The concentrations of acetylcholine (ACh) and choline (Ch), the high-affinity transport of Ch, and the rate of synthesis of ACh were measured in synaptosomes prepared from the brains of rats. The assays were made at critical times during the acute changes in behavior induced by administration of the anticholinesterase, di-isopropylfluorophosphate, and during the development of behavioral tolerance to this compound as chronicity of administration continued. No statistically significant differences were found among treatment groups in the total concentration of ACh or Ch, the synthesis of ACh, or the high-affinity transport of Ch. These results, plus evidence from previous experiments, indicate that the development of behavioral tolerance does not relate to the factors studied. Consequently, alternative mechanisms should be considered. In addition to changes in cholinergic (muscarinic) receptors already shown to occur concomitantly with the development of behavioral tolerance, it is suggested that the possible involvement of mechanisms controlling release of ACh should be studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.