Abstract. The location, timing, spatial extent, and frequency of wildfires are changing rapidly in many parts of the world, producing substantial impacts on ecosystems, people, and potentially climate. Paleofire records based on charcoal accumulation in sediments enable modern changes in biomass burning to be considered in their long-term context. Paleofire records also provide insights into the causes and impacts of past wildfires and emissions when analyzed in conjunction with other paleoenvironmental data and with fire models. Here we present new 1000-year and 22 000-year trends and gridded biomass burning reconstructions based on the Global Charcoal Database version 3 (GCDv3), which includes 736 charcoal records (57 more than in version 2). The new gridded reconstructions reveal the spatial patterns underlying the temporal trends in the data, allowing insights into likely controls on biomass burning at regional to global scales. In the most recent few decades, biomass burning has sharply increased in both hemispheres but especially in the north, where charcoal fluxes are now higher than at any other time during the past 22 000 years. We also discuss methodological issues relevant to data-model comparisons and identify areas for future research. Spatially gridded versions of the global data set from GCDv3 are provided to facilitate comparison with and validation of global fire simulations.
Wildfires are becoming more frequent in parts of the globe, but predicting where and when wildfires occur remains difficult. To predict wildfire extremes across the contiguous United States, we integrate a 30‐yr wildfire record with meteorological and housing data in spatiotemporal Bayesian statistical models with spatially varying nonlinear effects. We compared different distributions for the number and sizes of large fires to generate a posterior predictive distribution based on finite sample maxima for extreme events (the largest fires over bounded spatiotemporal domains). A zero‐inflated negative binomial model for fire counts and a lognormal model for burned areas provided the best performance. This model attains 99% interval coverage for the number of fires and 93% coverage for fire sizes over a six year withheld data set. Dryness and air temperature strongly predict extreme wildfire probabilities. Housing density has a hump‐shaped relationship with fire occurrence, with more fires occurring at intermediate housing densities. Statistically, these drivers affect the chance of an extreme wildfire in two ways: by altering fire size distributions, and by altering fire frequency, which influences sampling from the tails of fire size distributions. We conclude that recent extremes should not be surprising, and that the contiguous United States may be on the verge of even larger wildfire extremes.
The geological record shows that abrupt changes in the Earth system can occur on timescales short enough to challenge the capacity of human societies to adapt to environmental pressures. In many cases, abrupt changes arise from slow changes in one component of the Earth system that eventually pass a critical threshold, or tipping point, after which impacts cascade through coupled climate-ecological-social systems. The chance of detecting abrupt changes and tipping points increases with the length of observations. The geological record provides the only long-term information we have on the conditions and processes that can drive physical, ecological and social systems into new states or organizational structures that may be irreversible within human time frames. Here, we use well-documented abrupt changes of the past 30 kyr to illustrate how their impacts cascade through the Earth system. We review useful indicators of upcoming abrupt changes, or early warning signals, and provide a perspective on the contributions of palaeoclimate science to the understanding of abrupt changes in the Earth system.
Recent fires have fueled concerns that regional and global warming trends are leading to more extreme burning. We found compelling evidence that average fire events in regions of the United States are up to four times the size, triple the frequency, and more widespread in the 2000s than in the previous two decades. Moreover, the most extreme fires are also larger, more common, and more likely to co-occur with other extreme fires. This documented shift in burning patterns across most of the country aligns with the palpable change in fire dynamics noted by the media, public, and fire-fighting officials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.